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Fig. 1. Clipping of the final Outbreak Radar dashboard tool. The primary navigation panel is composed of the heatmap on the left, the 
bubble map in the top center, and the tabular summary in the bottom center. Time-series case data for the selected intersection of a 
disease and USA division can be visualized as a line-over-bar chart under the right column, which is stacked as more pairings are 
accumulated. 

Abstract—Provincial public health users regularly assess and determine the risk of disease outbreak for various regions within BC                                   
based on current and historical case data. This information is used to take appropriate prophylactic measures and mount the                                     
necessary response. To this end, Outbreak Radar is a dashboard designed to help these users determine the outbreak risk of                                       
diseases within these monitored regions in a clear and convenient manner. The dashboard is designed with guidance from a                                     
meta-analysis conducted in this report on public COVID dashboards that collectively present a similar but adjacent type of data                                     
and existing design recommendations for dashboards. Based on these recommendations, the iterative re-design of the dashboard                               
prototypes are detailed that ultimately lead to the final implementation, which will be tested by BCCDC public health users in the                                         
near future and potentially integrated into their process. 
Index Terms—disease outbreak, detection, public health, interaction 

 

1 INTRODUCTION 

Disease monitoring is an important function of the public health 
system globally. With the ongoing COVID-19 pandemic, public 
interest in disease monitoring has risen dramatically in the past 
months, and various dashboards visualizing disease count data have 
been made available by government agencies, public health 
organizations, universities, and hobbyists alike. The dashboards have 
been developed for multiple purposes: didactic purposes for general 
public and specific purposes to help public health users effectively 
and efficiently detect trends and make informed decisions. 

In particular, a critical task for public health users is to detect 
disease outbreaks, where a disease outbreak is defined as “the 
occurrence of disease cases in excess normal expectancy” [1] 
COVID-19 is one of more than 60 notifiable diseases or disease 
categories being monitored in British Columbia, and these diseases 
exhibit a variety of trends, such as seasonality in meningococcal 
disease and a gradual decline in acute hepatitis A. Consequently, it 
creates a great burden on public health users, who need to consider 
these complex disease characteristics and trends when deciding 
whether a reported disease count is higher than expected. Inevitably, 
the detection process is both fallible and costly. To alleviate the 
burden on public health users, an automated method has been 
developed in collaboration with the British Columbia Centre for 
Disease Control (BCCDC) [2]. 

The goal of this project is to develop a visualization dashboard 
specifically designed for public health users to help them efficiently 
process the output of the automated method for the main task of 

detecting disease outbreaks. The rest of the report is organized as 
follows. In Section 2, we will review two dashboards for detecting 
disease outbreaks. In Section 3, we will describe the data and task 
abstraction for this project. In a subsequent section, we will analyze 
some existing COVID-19 dashboards to identify useful aspects and 
idioms for designing our dashboard. In addition, we will review 
guidelines and recommendations that have been published by 
professionals and academics for both design and ethics 
considerations. In Section 5, we will integrate the recommended 
guidelines and idioms to design and implement a dashboard. We will 
present our results in Section 6 and discuss limitations and future 
work in Section 7. Distribution of work across the authors is 
summarised in Appendix. 

2 RELATED WORK 

There is a dashboard developed at the BCCDC to help the public 
health users detect disease outbreaks using its internally developed 
algorithm, which is called the Public Health Intelligence for Disease 
Outbreaks (PHIDO) dashboard [3]. The PHIDO dashboard only 
provides users with a 2D line plot to show the observed disease count 
cases and the predicted disease outbreak levels over a selected period 
of time. Similarly, in our project, we also planned to implement a 
dashboard to visualize disease outbreaks using the automated method 
mentioned in the introduction. However, in this project, we 
considered more aspects of the visualization of disease outbreaks, 

 



 

such as visualization on disease outbreak levels with geographical 
context. Even sharing similar project goals, our dashboard design 
would have more implementation features than those in the PHIDO 
dashboard, which could provide public health users with 
visualization on not only the trend of disease case numbers and 
outbreak levels but also geographical information of disease 
outbreaks. 

Besides the PHIDO dashboard, we found the Somalia Polio 
Room Dashboard, which was designed for disease outbreak detection 
as well,  introduced in a case study article conducted by Kamadjeu et 
al. [4]. The Somalia Polio Room Dashboard aims to address the 
needs of timely information on cases and performance indicators of 
the polio outbreak and to provide decision makers with a graphical 
display of the needed information. After introducing the dashboard 
design, the authors conducted an analysis on the dashboard design 
and indicated that the Somalia Polio Room Dashboard is able to 
provide users with efficient information display and integration. 
Also, the authors learned some lessons from their analysis on the key 
factors for the dashboard design for the disease outbreaks. Similarly, 
in our project, we conducted an analysis on some existing COVID 
dashboards and design guidelines and learned lessons from the 
analysis, which were used in helping us come up with our dashboard 
designs. 

3 DATA AND TASKS 

3.1 Data 

Disease count data consist of spatio-temporal aggregations, 
providing the number of disease cases over a region during 
successive, regular time intervals. The BCCDC disease count 
database is composed of weekly counts of about 60 communicable  
diseases in 16 regions of British Columbia. As the BCCDC database 
is not available to the public, we used a publicly available disease 
count database of the United States (US) from Project Tycho as a 
proxy [5].  

Overall, the Tycho database was an adequate but not ideal proxy 
for the BCCDC database. After preprocessing the database, a clean 
subset was obtained with no missing values. There were 9 regions 
(US census/statistical divisions) with 6 diseases, each of which being 
collected on a weekly basis from 2009-01-04 to 2014-07-27. This 
translated to 290 data points for each disease in each state; this value 
is sufficient for the automated method (it requires at least three years 
of the weekly counts for reliable results). However, the number of 
diseases and the number of regions were much smaller than those in 
the BCCDC database. While the number of regions was somewhat 
comparable (9 vs. 16), the number of diseases was only a fraction of 
the desired target  (6 vs. 60). In  the dashboard design, we took into 
consideration of this key difference in cardinality and chose idioms 
appropriately . 

We collected an additional attribute on the number of population 
in each region using the US Census Bureau data [6]. This attribute 
was needed to derive an attribute on the rate of cases, calculated as 
the number of cases divided by the number of population. 
Description of the finalized database is provided in Table 1. 

Table 1. Description of the Tycho Disease Count Database 

We now describe the derived input and output attributes for the 
automated method. The automated method took three inputs: the 
number of cases, the week number, and two trigonometric bases. The 
week number is the week date starting from 2009-01-01 (so that it is 
equal to 1 on 2009-01-07), and it was used to account for both the 
long-term and short term time trends in the disease count. The 
trigonometric bases were used to incorporate the seasonal pattern of 
the disease count. Note that the method was run on each disease for 
each region. 

The automethod method essentially provides a robust curve of 
the disease count by down-weighting the counts that are abnormally 
high. The direct output of the method is an ‘robust’ estimated 
number of cases at each of the week numbers. Based on the method, 
for each week number, the probability of obtaining the number of 
cases at least as extreme as the observed number of cases was 
computed; this is referred to as the (individual-level) p-value. Then 
an alert level for a disease count was derived from the p-value. The 
levels need to be defined by the user. For instance, the BCCDC uses 
four levels: none (p-value > 0.05), low (0.01<p-value <= 0.05), 
medium (0.001 < p-value <= 0.01), and high (p-value < 0.001).  

For a measure of a disease outbreak, we computed the outbreak 
p-value based on the last m numbers of cases, where m is specified 
by the user. For instance, the BCCDC uses m=3. Then similarly, an 
outbreak level was derived from the outbreak p-value according to 
the categorization defined by the user. Table 2 summarizes the 
derived attributes. 

Table 2. List of Derived Attributes for and from the Automated Method 

Attribute 
name 

Attribute 
type 

levels/range Description 

Disease Categorical 6 Disease name 

Week date Sequential/ 

ordered 

2009-01-04 
- 

2014-07-27 

Start and end dates of 
a week in which the 
number of cases is 

collected (290 
observations) 

Region Categorical 9 US census/statistical 
divisions 

Number of 
cases 

Quantitative 0 - 3140 
(integers) 

Number of disease 
cases collected in the 

week date 

Number of 
population 

Quantitative 14,469,650 
- 

62,382,273 

Number of people the 
year of the week date 

Rate of cases Quantitative 0.16 - 
1094.90 

(per 
10,000,000) 

Rate of cases, 
calculated as the 
number of cases 

divided by number of 
population 

Attribute 
name 

Attribute 
type 

Levels/range Description 



 

3.2 Tasks 

There are three main tasks that public health users are interested in: 
T1. As the total number of diseases to monitor across the 

regions is insurmountable (60*16=960 for the BCCDC), 
one important task for public health users is to efficiently 
search which disease is at high risk of an outbreak in each 
region. This task is performed each time a new number of 
cases  is reported (for instance, it is weekly for the 
BCCDC), contributing to a significant burden on the public 
health users. 

T2. If a disease with a high outbreak level (or equivalently low 
outbreak p-value) is found, then they need to analyze the 
trend in the number cases of the disease as well as the 
output of the automated method, such as the estimated 
number of cases and corresponding alert level at each time 
point, so as to confirm the validity of the outbreak level. 
For example, the BCCDC is most concerned with the last 
three weekly number of cases, from which the outbreak 
level is computed.  

T3. Moreover, the users need to compare the outbreak levels of 
a disease across the regions and investigate whether there 
is any spatial pattern. 

4 ANALYSIS OF COVID DASHBOARDS AND DESIGN 
RECOMMENDATIONS 

In the analysis section, we first conducted an analysis on some 
existing COVID dashboards, as illustrated in section 4.1. Then, we 
analyzed some dashboard design guidelines and recommendations in 
section 4.2. Finally, we summarized all the key points made in 
sections 4.1 and 4.2 and presented them in section 4.3.  

4.1 Analysis of COVID Dashboards 

As the COVID-19 pandemic develops around the world, dashboards 
for tracking information on COVID cases and case development 
trends are available online for public use. In this analysis, we 
reviewed a few COVID dashboards and extracted features and 
idioms from them, which were useful and inspiring in helping us 
come up with ideas on our dashboard design. Even though there were 
differences in tasks between COVID dashboards and ours, we still 
learned some useful lessons from the existing COVID dashboard 
implementations and planned to apply them to our design. More 
specifically, the lessons that we learned from this analysis will be 
useful in helping us address T2 and T3 in the task abstraction.  

4.1.1 Overview Design on Reported Case Counts of A 
Specific Disease 

In some existing COVID-19 dashboards [7]–[10], aggregated 
confirmed COVID-19 cases are presented in the form of a 
choropleth, such as the one shown in Fig. 2, where the numbers of 
reported cases across the states are scaled in the different degrees of 
color change. The redder a specific region on the map is, the more 
confirmed cases are reported in that region. This form of 
representation is beneficial for users to identify the regions with most 
reported cases by judging the hues shown on the map. However, the 
data in Fig. 2 is collected at the county level, which would be 
visually heavy for users to spot the states with most accumulated 
cases. In this project, we could use a choropleth to show the 

Input attributes 

Week number Quantitative 1-290 
(integers) 

Week number starting 
the minimum of Date 

Trigonometric 
bases 

Quantitative 
(cyclic) 

cos(2π*7*t/3
65.25), 

sin(2π*7*t/3
65.25)  

Trigonometric bases 
based on the week 
number 

Output attributes 

Estimated 
number of 
cases 

Quantitative Non-negative 
real valued 

The number of cases 
estimated by the 
automated method 

Outbreak 
p-value 

Quantitative 0-1 
(real-valued) 

Probability of 
obtaining the sum of 
the three most recent 
number of cases at 
least as extreme as the 
sum of the three most 
observed number of 
cases based on the 
automated method. 

Outbreak 
level 

Categorical User-defined Level of outbreak 
specified by public 
health users based on 
the outbreak p-value. 

p-value Quantitative 0-1 
(real-valued) 

Probability of 
obtaining the number 
of cases at least as 
extreme as the 
observed number of 
cases based on the 
automated method 

Alert level Categorial User-defined Level of alert 
specified by public 
health users based on 
the p-value. For 
example, an alert 
level is low, medium, 
or high if the outbreak 
score is 0.01-0.05, 
0.001 - 0.01, or less 

than 0.001, 
respectively. 



 

aggregated cases for a specific disease across all states so that users 
could quickly identify the regions with most reported cases, which is 
relevant to the need of T3 of this project. Also, since both the proxy 
dataset and the BCCDC dataset were collected at the provincial 
level, which could lessen visual burden for users while showing the 
overview of a specific disease across all regions, a choropleth for 
reported confirmed cases could be used to provide users with 
information on confirmed cases of a specific disease across all 
regions. Since the choropleth shows case numbers of only one 
disease in all collected regions at a time, the differences in disease 
numbers and region numbers between  the proxy dataset and the 
BCCDC dataset will not affect the display scale of the choropleth. 
However, one thing worth noting here is that the severity of how 
COVID spreads over the population within a specific region isn’t 
addressed with the total confirmed cases. Therefore, some COVID 
dashboards [7], [10] provide users with choropleths of total 
confirmed cases by population as well, such as the one shown in Fig. 
3. We could see from Fig. 2 and Fig. 3 that there is a shift of regions 
highlighted in red, which validates the idea that only showing a 
choropleth of total confirmed cases is not enough to illustrate the 
severity of the spread of a disease on the population in an area. Fig. 3 
provides users with information on regions where the population is 
affected most by the disease. This could be included as an option for 
the dashboard users in the project implementation. Similar to the 
traditional choropleths, the display scale of the normalized 
choropleths by population will not be affected by the differences in 
disease numbers and region numbers of the proxy dataset and the 
BCCDC dataset, as data of only one disease is shown on the map at a 
time.  

 

Fig. 2. Aggregated confirmed COVID cases in the United States are 
illustrated in a choropleth at the Johns Hopkins Coronavirus Resource 
Center website [10].   

 

Fig. 3. Aggregated confirmed COVID cases by population in the 
United States are illustrated in a choropleth at the Johns Hopkins 
Coronavirus Resource Center website [10].   

4.1.2 Overview Design on Disease Outbreak Levels of A 
Specific Disease 

Besides choropleths, some COVID dashboards use other idioms to 
show total cases reported in the United States. For instance, the 
bubble map shown in Fig. 4. The size of bubbles on the map 
represents the amount of total COVID cases in a specific state. The 
larger the bubble is, the more reported cases are within the specific 
region. Also, when users hover over a specific bubble in a region, a 
box will appear and show the total, active, recovered, and fatal case 
counts in that region and each case count category is represented 
with a colored circle legend for better visualibility. The usage of 
bubble size in this representation is not of high distinguishability, 
when the amounts of case counts do not have large differences, 
leading to less differences in bubble size and more difficulties in 
judgement on case number differences by eyes. However, in this 
project, a similar bubble map design could be used to show an 
overview of disease outbreak levels of a specific disease across all 
regions. In our project, we would have low/medium/high outbreak 
levels to classify the risk of disease outbreak in a specific region. In 
this case, we could use different colored bubbles, such as 
green/yellow/red bubbles to represent low/medium/high outbreak 
levels of a specific disease. Instead of having orange bubbles shown 
on map as illustrated in Fig. 4, we will show the outbreak level of a 
specific disease in a region by showing its corresponding colored 
bubble within the specific state. In this way, the user could quickly 
identify states at a high risk of disease outbreak by finding states 
with red bubbles shown on the map and this representation could 
meet the need of T3 of this project. Since the bubble map will only 
show the outbreak levels of a single disease across all regions on the 
map and there are only three defined disease outbreak levels, there 
will only be one of the three colored bubbles in each individual 
region on the map to represent the corresponding outbreak level of a 
region and the differences in disease numbers and region numbers 
between the proxy dataset and the BCCDC dataset will not affect the 
scalability of the idiom in both cases.  

 

Fig. 4. An overview of total cases in the United States shown in a map 
at the Bing COVID-19 tracker dashboard [8].  

4.1.3 Trend of Reported Case Counts  

There are different idioms in COVID dashboards that show the trend 
of reported case counts [7]–[10]. In this section, we will analyze and 
extract and combine features from these idioms and find the design 
that is more suitable for T2. In Fig. 5, a bar chart is used to show the 
trend of confirmed cases reported weekly in the United States. Also, 
if users hover over a bar, they will have more information on the 
weekly change of case counts compared with the reported cases from 
the previous week. In contrast, Fig. 6 shows a line over bar chart, 
which illustrates new daily cases reported in a state with a bar chart 
and the 7-day moving average of the new COVID cases with a line 
on top. More specifically, the green segment of the line indicates a 
day-over-day decrease in  new cases while the red segment of the 



 

line means a day-over-day increase in new cases. If there is no 
change, the segment of the line will be grey. 

In our project design, we could combine features from these two 
idioms. We could use a line over bar chart to show the trend of 
weekly reported case counts of a specific disease in a specific region, 
where the bars will represent weekly reported cases and the line will 
be the curve showing the trend of reported cases. Specifically, the 
curve will be color-coded to indicate the trend of increase, no 
change, or decrease of weekly reported cases similar to what is 
shown in Fig. 6. The green segment of the line indicates a weekly 
decrease in reported cases while the red segment of the line means a 
weekly increase in reported cases. If there is no change in case 
numbers, the segment of the line will be grey. When users hover over 
a specific bar, they will have an information box, similar to what 
we’ve seen in Fig. 5, which shows reported case counts in a specific 
week and the percentage of change compared to reported case 
amounts from the previous week. This idiom implementation is able 
to address the task stated in T2, while providing more details, such as 
percentage of change in case numbers, to users if they are interested. 
Since the line over bar chart will only show the trend of disease case 
number development of a specific disease in a specific region over a 
certain time period, the discrepancies in disease counts and region 
numbers of both the proxy dataset and the BCCDC dataset will not 
have an effect on the scalability of the idiom.  
 

 

Fig. 5. Trend of total confirmed cases reported weekly in the US 
shown at the WHO website [7].   

 

Fig. 6. Trend of new daily COVID cases reported in the state of Illinois 
and the trend of 7-day moving average [9].  

4.2 Analysis of Design Guidelines and 
Recommendations 

Besides conducting an analysis on COVID dashboards, we also 
reviewed some online articles regarding design recommendations 
and guidelines on how to present data in a dashboard layout. We 
have grouped the recommendations and guidelines into different 
categories shown below.  

4.2.1 Presentation of Reported Case Numbers 

As mentioned in [11], simply displaying reported case counts on a 
choropleth is not enough; instead, we should consider normalizing 
data by population before showing it on a choropleth or using a 
symbol map to show raw data instead. A choropleth by population 
could better show how a disease is impacting the population in a 

region, which is mentioned in the analysis above as well. One thing 
is worth noting about the choropleth is that normal projection of a 
place on the map is not showing accurate regional area due to the 
globe shape of the Earth; instead, we should consider using the 
Albers equal area projection on the choropleth map, which could 
show a more accurate shape of a specific region on a map [12]. 
Moreover, a symbol map could demonstrate how severe a disease is 
in a region without being limited by the size of the area on the map; 
besides a symbol map, a dot density map is a good way to represent 
case numbers in a region since the density of dots in a region could 
reflect how severe a disease is in a region [12].  

Furthermore, as mentioned in [11], [13], [14], color coding is 
important when showing data on a map; more specifically, we should 
avoid using red color as it tends to represent danger and death and 
could incite concerns or fears in the audience. Therefore, for 
continuous numbers, such as disease case counts, we should consider 
using a linear color scale, such as the viridis color scale, which 
avoids red color. For categorical data, for instance, various disease 
outbreak levels, we could utilize distinct colors other than red.  

With the above recommendations and guidelines, we have come 
up with the following suggestions on our dashboard design, which 
caters to the need of T3. We could show normalized data by regional 
population on a traditional choropleth where the map is gained 
through Albers equal area projection. Also, we could visualize raw 
case counts on a symbol map or a dot density map. In this way, we 
could better visualize the practical impact of an outbreak of a disease 
on the population specific regions by looking at their corresponding 
densities of symbols or dots shown on the map. Since symbol maps 
and dot density maps will only demonstrate the severity of disease 
case counts of one specific disease across all regions at a time, the 
discrepancies in the numbers of diseases of both the proxy dataset 
and the BCCDC dataset will not have an effect on the scalability of 
the idiom. Also, all color coding used in these maps would leave out 
color red.  

4.2.2 Scale of Representation 

In [12], the author mentioned that it could cause misleading 
information representations when the system allows users to zoom 
in/out too far. Therefore, it is important to limit the zoom levels that 
the users are allowed to adjust to avoid data misinterpretation. In 
other words, we need to consider setting a limit that is logical for the 
granularity of the visualization. Besides zooming scales, the scale of 
data representation when comparing diseases needs extra caution as 
well, according to [14]. The author further explained that comparing 
two diseases is not as simple as juxtaposing two disease graphs, since 
there are differences in testing and treatments, outbreak levels, and 
raw cases of various diseases. Therefore, the graphical 
representations might not equally represent the actual risk of 
diseases, not to mention comparing the differences among these 
diseases. Lastly, we should also pay attention to the time scale that 
we set on the dashboard. According to [15], not all historical data is 
useful to demonstrate a viewpoint. In our dashboard, we should 
consider having the users to specify the time frame to be drawn and 
the visualization should show the relevant data within that time 
frame. However, in our case, we should set the rightmost data point 
to be the most current case count to constrain use to the intended 
tasks as demonstrated in the previous sections.  

4.2.3 Notations on the Dashboard Design   

As mentioned in [11], [16], showing testing and recovery numbers is 
important for rapidly changing diseases, such as the COVID. Even 
though it might be less relevant for our data, low base rate diseases 
with known treatments where patients self report to their doctors, we 
should keep this in mind in case we would have rapidly changing 



 

diseases involved in our data. Also, if data is missing for a specific 
week, the frequency and quality of reports could vary, as mentioned 
in [11]. If this happens in the dataset in the future, we should flag this 
on the visualization with a different color to make the missing 
portions explicit. Moreover, we should also note the parameters and 
inputs of the models used thoroughly to avoid use of outputs without 
any context, according to [16], [17]. Lastly, as mentioned in [17], 
[18], dashboard designers have the responsibility to keep the 
dashboard accurate and up-to-date. In our dashboard design, it means 
that data should be easy to update on a weekly basis so that the 
dashboard can continue to be used.  

4.3 Summary of Analyses and Design 
Recommendations 

Here is a summary of key points mentioned in sections 4.1 and 4.2, 
which would address the need of T2 and T3 and some 
implementation design details. 

● For T2: 
○ Use a line over bar chart to show the trend of 

weekly reported case numbers of a specific disease in 
a specific state, where the bars will represent weekly 
reported case numbers and the line will demonstrate 
the trend of change of case numbers . 

○ The line will be color-coded to indicate the trend of 
increase or decrease change of weekly case counts. 
The green segment of the line indicates a weekly 
decrease in reported cases while the orange segment 
of the line means a weekly increase in reported cases. 
If there is no change in weekly reported cases, the 
segment of the line will be grey.  

○ When users hover over a specific bar, they will have 
an information box, which shows reported case 
counts in the week and the percentage of change 
compared to cases from the previous week. 

● For T3: 
○ Use a symbol map or a dot density map to show the 

weekly reported case numbers for a specific disease 
across all states so that users could quickly identify 
the regions with most reported cases.  

○ Add a choropleth of total weekly confirmed cases by 
population to show the severity of the spread of a 
disease on the population in an area. 
■ Use the Albers equal area projection for the 

map on the choropleth. 
○ Use a bubble map to show the outbreak level of a 

specific disease in a region by showing its 
corresponding colored bubble within the specific 
region. 
■ On the map, three bubbles of different colors 

represent low/medium/high outbreak levels of a 
specific disease. 

○ Avoid using color red on all maps. 
● Other recommendations on implementation: 

○ Set a limit on the zoom level to avoid data 
misinterpretation.  

○ Allow users to specify the time frame to be drawn. 
○ Set the rightmost data point to be the most current 

case count. 
○ Flag missing data with a different color on the 

dashboard. 
○ Note the parameters and inputs of the model on the 

dashboard. 
○ Allow users to update data on a weekly basis to 

maintain information up-to-date.  

5 PROTOTYPE AND IMPLEMENTATION 

In order to integrate the guidelines from our analysis in the context of 
this dashboard, a number of prototypes were designed and iterated 
upon in order to arrive at the final implementation. In this section, 
those prototypes will be discussed as well as the design changes that 
were made. Finally, details on the final dashboard will be provided in 
addition to a description of the expected workflow. 

5.1 First Prototype 

 
Fig. 7. Schematic drawing of first dashboard prototype. 

The first prototype was made concurrently with the analysis 
component of this project, and was therefore created without any 
knowledge of health-dashboard-specific guidelines or 
recommendations. Driven purely by the task abstractions and the 
algorithm that was providing the novelty in this dashboard, the focus 
and key visualization naturally became the time-series visualization. 
This type of visualization could display the robustly fitted curve 
which was enabling the identification of potential outbreak 
timepoints. Simple visual markers and detailed call-outs were 
discussed in order to retain individual-point detail, but also to 
provide quantitative justification for outliers labeled by the model. 

To manipulate the time-series, the addition of a time-window 
slider was also considered, which could be used to add utility 
through selection of a time-frame of interest. This could allow the 
end user to scrub through historical data and look for variable 
periodicity. Additionally, the timeline would provide context for the 
time frame being presented in the time-series as well as the complete 
window of data available. 

To supplement the time-series, a choropleth was considered in 
order to provide geospatial context to the timeseries. Due to the 
nature of the data being explored, a spatial trend could exist where 
adjacent regions have similar risk levels as a result of physical 
transmission. While an algorithm to model this transmission is 
outside the scope of this project, an expert user may be able to make 
such an inference if the data is presented spatially. 

Finally, in order to switch between diseases of interest, a tab-like 
structure was considered using color-coded buttons. These would 
serve as selection tools, but would also act as a quick visual indicator 
of which diseases are at high risk for outbreak. 

5.2 Second Prototype 
The main shortcoming that was found with the first prototype was 
that it was not immediately obvious which regions were at risk for 
which diseases. While the buttons provided a general risk summary 
for all regions with data, it was not possible to tell which individual 
regions were of concern without selecting a disease first. 
Furthermore, this workflow of selecting a disease, then a region, was 
not conducive to exploring trends between diseases for one specific 
region. To do so would require selecting a disease, observing the risk 



 

level for the region of interest and remembering its risk level, 
selecting a different disease, and making the comparison mentally.  

In retrospect, this issue originated from the inside-out design 
process of the first prototype, where the time-series was identified 
first as the basic subunit of the dashboard. This led to the addition of 
the choropleth and the selection buttons as supplements for context, 
and not as key data filtering steps. As a result, the user experience of 
disease and region selection was designed secondary to the model 
visualization.  

As T1 involves identifying both regions and diseases at risk for 
an outbreak, this was a key issue addressed in the second prototype 
through the addition of a heatmap. It was determined that a heatmap 
most succinctly summarised the relationship between two factors in a 
visual manner. The heatmap cells could be colored by the 
predetermined risk level in a categorical manner, summarising the 
findings of the model for all diseases across all regions. By choosing 
a cell, a region and a disease are selected inherently by the 
intersection. The two facets of this selection can be presented 
separately on a choropleth as before (summarising all regions for a 
specific disease) as well as a visual table (summarising all disease 
statuses within the selected region). 

The intended user experience was a highly flexible integration of 
these three visualizations, where selection of a specific region or 
disease in one panel would update the other two panels to reflect the 
changes. This allowed for exploration driven by curiosity and 
discovery as new patterns and relationships are revealed through the 
choropleth or the visual table. 
 

 

Fig. 8. Schematic drawing of second dashboard prototype’s overview 
panels. 

Once this selection has been made, it was then reasonable for the 
time-series to be presented as a detailed visualization of the 
user-specified data slice. It was imagined that a number of these 
time-series could be presented on a common time scale, as the user 
explores the various combinations and identifies interesting and 
important pairings for reporting or further analysis. 

 

Fig. 9. Schematic drawing of second dashboard prototype’s 
time-series panels. Intended to be displayed upon user selection in a 
stacked column. 

Key questions remained after this prototype regarding the 
practical implementation of the choropleth, table, and the time-series. 
Specifically,  the implementation must avoid known pitfalls when 
using choropleths involving user correlation of area with significance 
and the effect of color intensity. Presenting case data on a time-series 
scatter plot can also be precarious, as it can be unclear if the data is 
being aggregated over time, or if the cases are presented as 
normalized rates or as raw case numbers (both of which have their 
individual shortcomings). 

Additionally, the decision to show the underlying predictive 
model’s trajectory as opposed to a more generally interpretable 
trendline was discussed. While the former could be used to justify 
the significance value attributed to various outbreak risk evaluations, 
we believed this was outside the scope and complexity of the 
dashboard for its intended use. The evaluation of the model in this 
manner would require further manual investigation of the statistical 
data that will not be unavailable through this dashboard. Providing 
such data would be distracting from the intended use-case. In the 
event that the results from the model are brought into question, a 
more rigorous and detailed investigation should be conducted at a 
lower level than this dashboard, which would be encouraged by 
simply omitting this robust curve. In its place, a simple colored 
trendline to indicate gain or loss can be more powerful in showing 
medium- to long-term trends. 

Finally, a decision was made to remove the timeline scrubbing 
included in the first prototype. This was fundamentally due to the 
intended purpose of the dashboard, which was to enable rapid 
assessment of outbreak risk on a weekly basis. The only relevant 
data-points in this calculation are the three most recent ones, and 
there will never be a scenario where historical data is a subject of 
interest. To prevent misleading the user as to the purpose and 
functionality of this dashboard, the timeline was determined to be 
superfluous. 

5.3 Final Implementation 
The final implementation of this dashboard was conducted in R, and 
was made interactive through the use of the ShinyApp package. 
Largely, the final implementation reflects the design of the second 
prototype. The heatmap is used both as a summary and selection 
tool, which is integrated with the geospatial and tabular 
visualizations. Here, the specific parameters of the idioms were 
changed. 

In place of a classic choropleth map colored by region, the 
COVID dashboard analysis recommended the use of data scaled per 
capita presented on a bubble map. By using the size channel to 



 

encode the case rate, and bubble color to encode the risk level, the 
spatial position of each bubble over its relevant region provides a 
clear, unbiased visual summary of the population-adjusted case rate 
across the covered regions. 

 

Fig. 10. Screenshot of implemented dashboard’s overview panels. 

Further to the recommendations, a dot density plot was added as 
a secondary option to supplement the bubble map. While normalized 
data is important for making generalized decisions that affect a 
region, it is equally important when working with case data to 
remember that each case affects a real person. To this end, many 
published dashboards recommend the use of a dot density plot to 
provide an intuition for the number of cases affecting a region. Here, 
color was used that is consistent with the annotations on the heatmap 
which may be useful in connecting the regions to the heatmap 
summary. 
 

 

Fig. 11. Dot-density map depicting toy-data cases of salmonellosis in 
the USA by division. Dots do not show the precise geographic 
location of a case, but rather are intended to showcase density by 
region. 

Finally, for the time-series panels, a line-over-bar chart was 
chosen as the idiom, combined with a colored gain/loss trendline. 
Based on the recommendations, this best presented the case data as 
“counts per time point”, showing the trendline implicitly through the 
change in bar height, but also explicitly using the line graph. The 
addition of a directional trendline color highlights runs of 
consistently rising or falling case numbers, which are important for 
intuitively understanding why a certain risk level has been assigned. 
Additionally, the segmented trendline utilizes angle in order to 
emphasize the magnitude of change between weeks, where a steep 
angle suggests a significant change occurred. 

 

Fig. 12. Stacked time-series line-over-bar charts depicting historical 
case count and risk level for user selected disease-division pairings. 

6 RESULTS 

The dashboard was successfully implemented as designed, and 
largely feature-complete as it was conceived in the second prototype. 
Due to its design using R’s ShinyApp, the dashboard is portably 
deployable and can be updated independent of the data being 
visualized as it changes on a weekly basis. 

Due to availability and the pressing importance of the current 
global pandemic, it was not possible to meet with members of the 
BCCDC to evaluate the performance of the dashboard. However, 
from peer review and internal testing, key criticisms were made 
regarding the dashboard’s performance and scalability. Due to the 
scale of the data being presented and the visual complexity of the 
bubble and dot-density map during rendering, the dashboard can 
become “sluggish” over time, especially as more time-series are 
requested. However, the flow for slicing data of interest was found to 
be intuitive and clear, as the functionality for selection and switching 
between views was often used without prompting or further 
guidance. 

7 DISCUSSION 

In this project, a dashboard intended to be used by public health 
users to determine the outbreak risk of diseases across a large region 
was designed and implemented. Our analyses of public COVID 
dashboard as well as guidelines presented by experts in these fields 
were used to guide the iterative design process of creating Outbreak 
Radar. This dashboard serves as a solid foundation inviting further 
improvement on the dashboard’s functionality in this capacity. 

7.1 Limitations 
The main limitation of this current iteration is actually a shortcoming 
in the selected proxy dataset from Project Tycho. Specifically, the 
final deployment of this dashboard will be working with 60 diseases 
and 16 regions, which has a large difference in cardinality. 
Additionally, use of color to connect the regions to the heatmap is 



 

not conducive to such an increase in region number due to the lack of 
distinct color diversity in a palette of this size  

7.2 Future work 
Moving forward, a number of significant improvements could be 
made to this dashboard. Firstly, performance optimizations would be 
paramount as the current implementation is quite slow to render. 
This is exacerbated by the complexity of the maps and visualizations, 
but can likely be addressed by improved implementation. If this is 
addressed, this could likely also improve performance and scalability 
with a dataset that has comparable cardinality to the ultimate 
deployment data. This could be confirmed with the use of a better 
proxy that would allow for more robust testing of the dashboard and 
visualization design for data at scale. 

Due to time constraints, not all the recommendations made in 
analysis were able to be fully integrated into the dashboard’s design. 
As future work, this first iteration could be functionally improved 
through the addition of interactivity in the time-series bar charts. 
Combined with the ability to preview, reorganize, and delete these 
charts, the user could better curate a list of disease and region pairs 
that are of interest for the week. This functionality would naturally 
be consolidated by reporting functionality that would allow the 
results to be exported as a printable document. 

Finally, additional exploration functionality could be added to 
the dashboard by allowing user-defined cutoff values for the various 
outbreak severity categories. While the cutoffs used here were the 
defaults used previously in BCCDC’s PHIDO, a variable level of 
granularity may be desirable depending on the type of response and 
volume of resources available. These values would then be reflected 
across the dashboard and used to explore the user curated set of 
time-series. 

ACKNOWLEDGMENTS 
We would like to thank Dr. Tamara Munzner for her feedback and                       
guidance. 

REFERENCES 

[1] “WHO | Disease outbreaks,” WHO. 
https://www.who.int/environmental_health_emergencies/diseas
e_outbreaks/en/ (accessed Oct. 22, 2020). 

[2] T. Y. (Harry) Lee, “Robust methods for generalized partial 
linear partial additive models with an application to detection of 
disease outbreaks,” University of British Columbia, 2019. 

[3] BC CDC, “PHIDO (public health intelligence for disease 
outbreaks) for Windows: User manual,” 2010. 

[4] R. Kamadjeu and C. Gathenji, “Designing and implementing an 
electronic dashboard for disease outbreaks response - Case 
study of the 2013-2014 Somalia Polio outbreak response 
dashboard,” Pan Afr Med J, vol. 27, no. Suppl 3, p. 22, 2017, 
doi: 10.11604/pamj.supp.2017.27.3.11062. 

[5] W. G. van Panhuis et al., “Contagious diseases in the United 
States from 1888 to the present,” N Engl J Med, vol. 369, no. 
22, pp. 2152–2158, Nov. 2013, doi: 10.1056/NEJMms1215400. 

[6] U.S. Census Bureau, “Population, Population Change, and 
Estimated Components of Population Change: April 1, 2010 to 
July 1, 2019,” NST-EST2019-alldata, 2019. Accessed: Dec. 06, 
2020. [Online]. Available: 
https://www.census.gov/data/tables/time-series/demo/popest/20
10s-state-total.html. 

[7] “WHO Coronavirus Disease (COVID-19) Dashboard.” 
https://covid19.who.int (accessed Oct. 22, 2020). 

[8] “Microsoft Bing COVID-19 Tracker.” 
http://bing.com/covid/local/maine_unitedstates?dynamicSharin
g=true&shtp=Facebook&shwth=900&shh=800&shtk=Y29yb2
5hdmlydXMgdHJhY2tlciB1cGRhdGVz&shdk=dGVzdA%3D
%3D&shth=OSH.Mmq%2BwuM5WWl/TcdViNGxBA&redire

ct_uri=http%3A//veeraux%3A81/covid/local/unitedstates%3Fd
ynamicSharing%3Dtrue&ref=Coronavirus&al (accessed Oct. 
22, 2020). 

[9] “Track Testing Trends,” Johns Hopkins Coronavirus Resource 
Center. https://coronavirus.jhu.edu/testing/tracker (accessed 
Nov. 17, 2020). 

[10] “COVID-19 Map,” Johns Hopkins Coronavirus Resource 
Center. https://coronavirus.jhu.edu/map.html (accessed Oct. 22, 
2020). 

[11] “The COVID Tracking Project Visualization Guide,” The 
COVID Tracking Project. 
https://covidtracking.com/about-data/visualization-guide 
(accessed Oct. 22, 2020). 

[12] K. Field, “Mapping coronavirus, responsibly,” ArcGIS Blog, 
Feb. 25, 2020. 
https://www.esri.com/arcgis-blog/products/product/mapping/m
apping-coronavirus-responsibly/ (accessed Dec. 03, 2020). 

[13] “A complete guide to coronavirus charts: Be informed, not 
terrified.” 
https://www.fastcompany.com/90477393/a-complete-guide-to-
coronavirus-charts-be-informed-not-terrified (accessed Oct. 22, 
2020). 

[14] L. C. Rost, “17 (or so) responsible live visualizations about the 
coronavirus, for you to use,” Chartable, Mar. 06, 2020. 
https://blog.datawrapper.de/coronaviruscharts/index.html 
(accessed Oct. 22, 2020). 

[15] S. Berinato, “Visualizations That Really Work,” Harvard 
Business Review, no. June 2016, Jun. 01, 2016. 

[16] A. Makulec, “Ten Considerations Before you Create another 
Chart about COVID-19,” Medium, Apr. 27, 2020. 
https://medium.com/nightingale/ten-considerations-before-you-
create-another-chart-about-covid-19-27d3bd691be8 (accessed 
Oct. 22, 2020). 

[17] M. D. Wilkinson et al., “The FAIR Guiding Principles for 
scientific data management and stewardship,” Sci Data, vol. 3, 
no. 1, p. 160018, Dec. 2016, doi: 10.1038/sdata.2016.18. 

[18] “EvanMPeck on Twitter,” Twitter. 
https://twitter.com/EvanMPeck/status/1235568532840120321 
(accessed Oct. 22, 2020). 

APPENDIX 
Table A1. Distribution of work across team members 

 

Task 
Time Invested (hrs) 

Cloris Derek Harry 

Proposal 20 20 20 

Analysis of dashboards 30 - - 

Analysis of design 
guidelines 

9 4 - 

Data preparation and 
analysis 

- - 20 

Design brainstorming 4 4 4 

Implementation - 40 10 

Project update write-up & 
meeting 

15 15 15 

Final presentation 8 10 10 

Final report write-up         11 10 10 


