
EnergyFlowVis: Visualizing energy use flows on UBC Campus

Claude Demers-Bélanger | Sanyogita Manu December 10, 2020

CPSC 547

Introduction

- UBC Energy and Water Services (EWS) Unit
 - Energy savings potential
 - Greenhouse gas emissions
 - Building management systems
 - Existing applications

Team

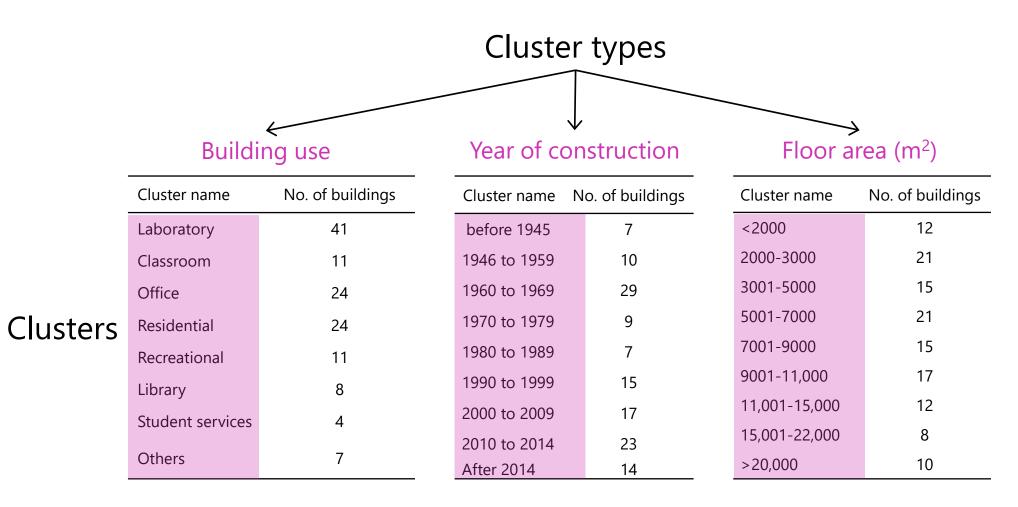
Claude Demers-Bélanger (MASc candidate, MECH)

Machine Learning for Building Science Occupant Centric Control Data Analytics Recommendation Systems Sanyogita Manu (PhD candidate, MECH)

Building energy performance Occupant behaviour; thermal comfort Indoor environmental quality NEW: wellbeing and work-from-home during COVID19

Energy, Technology, and Architecture (ETA) Lab

Dataset


- EWS
- SkySpark platform
- InfluxDB conversion
 - Sensor metadata
 - Metering data
 - Building metadata

Data abstraction: what?

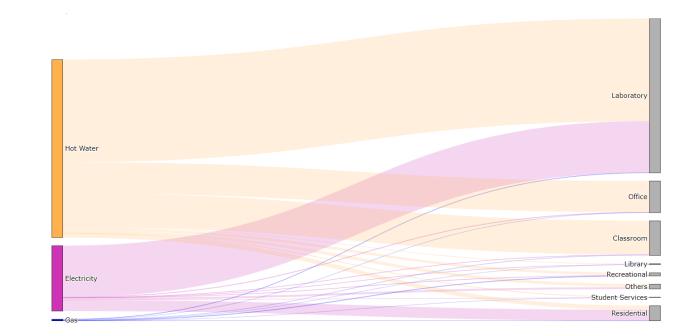
• Derived data

- Multidimensional table
 - Quantitative attribute: Total energy
 - Quantitative attribute: Energy Use Index
 - Ordered key attribute: Date
 - Categorical key attribute: Energy source
 - Categorical key attribute: Building name
 - Categorical key attribute: Building use
 - Categorical key attribute: Year of construction
 - Categorical key attribute: Floor area

Data abstraction: what?

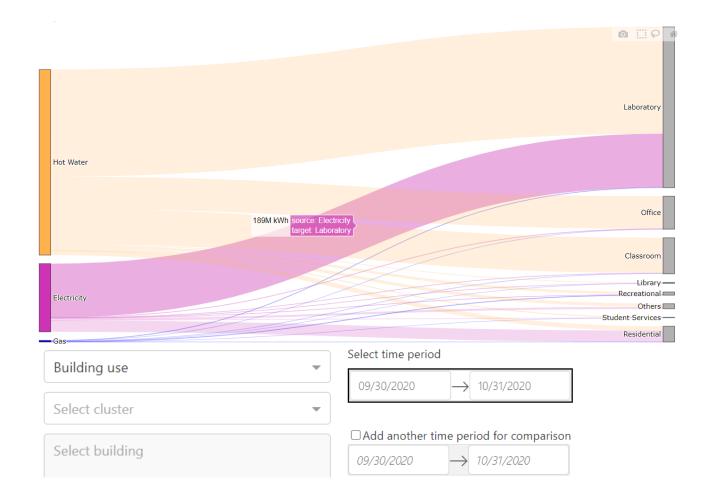
EnergyFlowVis

Task abstraction: why?


 Analyze discover present Produce derive Search explore locate 	Task 1 : Energy use on campus across different energy sources for a specific time period.	
	Task 2 : Energy use across different energy sources for different building use clusters for a specific time period.	
	Task 3 : Energy use across different energy sources for different building size (floor area) clusters for a specific time period.	 Task 6: Compare cluster level energy use data for two different time periods. Task 7: Compare energy use data across clusters for the same time period.
	 Query identify compare 	
Task 9 : Compare energy use data across different buildings for the same time period.		

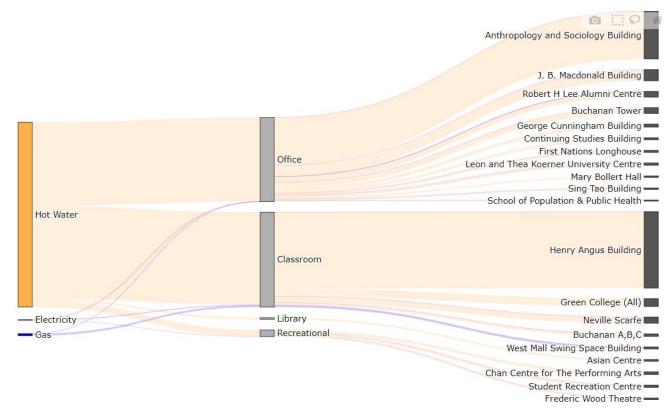
Solution: *how*?

- Technology:
 - Dash, Python, InfluxDB


• Encode

- Area marks (energy flows) for the quantity of energy use
- Energy sources by color
 - Categorical
- Energy source and end uses (targets) by node position
 - Source nodes on the left
 - Target nodes on the right
 - Lower-level target nodes on extreme right

Solution: *how*?


- Manipulate:
 - Reorder, realign, animate transitions;
 - navigate between aggregation levels: cluster type → cluster → building
 - Highlighting
 - Energy flows increasing saturation, data tags
 - Nodes data tags
 - Reduce attributes
 - Filter through dynamic queries
 - Reduce items
 - Interactive item aggregation to change level of detail

Solution: *how*?

• Facet:

- Superimpose:
 - two layers to compare time periods
 - multiple layers to compare clusters
 - distinguished by position of nodes
 - maximum nodes 20
- Layers are constructed dynamically in response to user selection.

Solution: Conclusion

- Dash is good for prototype, Application not production ready
- Sankey diagrams gives a good overview of trends
 - Detailed comparison aren't as good (i.e. Bar or line charts)
- Building with low consumption can be lost
 - Users need to know what they are looking for

Future work

- Anomaly Detection before visualization
- User study
- Convert to different tech. stack if the UI bugs can't be solved
- Go "Left" or "Right" of the graphs
 - Source of energy and detailed consumption