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1 Introduction

A compiler from a high-level language down to an assembly-like language traditionally in-
volves a sequence of compiler passes, each of which performs a specific transformation on an
input program to produce an output program for the next pass. In an undergraduate com-
pilers course, the goal is to understand why these passes are necessary and how each pass is
constructed. One difficulty in the learning process is that the compiler pass implementation
itself may be too abstract to gain an intuitive understanding of its purpose, while merely
reading the source and target programs does not reveal much about how the pieces of the
programs were transformed.

In this paper, we present SecondPass1, a multi-pass compiler visualization for UBC’s
upper-year compilers course (CPSC 411) that aims to elucidate the connections between
source and target program substructures and to provide an intuitive understanding of the
kind of structural transformations that compilers do. Given a particular source program, it
presents intermediate and final programs – the results of multiple stages of compilation – side
by side, with interactive flows between related components of source and target programs.

We limit the scope of this project to only two particular fundamental compiler passes:
A-normalization and instruction selection, described in detail in Section 2. Furthermore, as
this is primarily a pedagogical tool, it focuses on effective visualization of relatively small
input programs, as opposed to existing visualizations which focus on large source code files
or optimizing compiler passes.

1.1 Motivation

In the fourth week of the UBC’s CPSC 411: Introduction to Compiler Construction, a
student and her two project teammates are tasked with introducing control flow to their
compiler. As with every week, she looks at the language specifications introduced in weekly
batches, selects an arbitrary 7 of the 21 tasks presented, and starts working.

Unknown to her at the time of task selection, two of her selected tasks amount to half
of this week’s work for the entire team (when measured in hours of effort or lines of code).
Oblivious, she continues work on her team’s compiler.

One large task has her scrolling up and down on the course website, comparing the
definitions of two languages that define the input and output of a particular program trans-

1formerly FirstPass2
2formerly Untitled Compiler Pass Visualization

1



formation. She attempts to build a mental model of what the transformation is meant to
be by looking at the static definitions one at a time.

The complexity of the compilers in CPSC 411 grows with each passing week. Debug-
ging equates to going back to the language specifications and performing manual language
transformations before comparing them to her generated output.

Building a compiler is hard enough already without misestimating the distribution of
work, poring over scattered, static language definitions, or getting too few examples of how
to make it right in the exact situations where students’ bugs arise.

With our new compiler visualization, SecondPass, we aim to reduce these student frus-
trations by providing a tool that visualizes the programs before and after transformation to
effectively present what a compiler is doing – without giving away too much of the how. As
domain experts who have taken undergraduate compilers courses (including CPSC 411) and
are intimate with their struggles, and who have worked on other compilers as well, we have
the experience and the expertise to identify the relevant problems and propose an effective
solution.

We begin in Section 2 with a description of the domain details relevant to the CPSC
411 compilers course. We then outline the primary tasks students are expected to complete
throughout the course in Section 3, as well as an abstracted representation of programs
and compiler passes which we manipulate in Section 4. Section 5 discusses relevant work
in visualizing code and compilers, and how existing solutions fall short of our tasks. We
introduce our proposed visualization in Section 6 and detail its design and implementation.
Finally, our milestones and schedule can be found in Section 7.

2 Background

Figure 1: An overview of a multi-pass compiler. The initial source program gets transformed
by the first pass into the first target program, which is equivalent to the source program of
the second pass. The second outputs a second target program, which becomes the source
program for the next pass. This process repeats until the final target program is reached.
The intermediate source programs are often written in an intermediate language (IL).

In CPSC 411, a compiler begins with a high-level program and ends with an assembly
program. But it doesn’t compile directly from the former to the latter in one go, as a
single-pass compiler would. Rather, it is a multi-pass compiler, divided into many compiler
passes which sequentially compile a program in a high-level language to programs in several
intermediate languages. The program that a compiler pass compiles is called the source
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program and its output is the target program. These programs are often written in different
languages, whose syntax can be specified by a BNF grammar. The process of a multi-pass
compiler is summarized in Figure 1.

As mentioned, we will focus on two specific compiler passes:

1. A-normalization, which sequentializes necessary computational steps and makes
control flow explicit; and

2. Instruction selection, which sequentializes the program further by converting func-
tion calls to jumps.

To compile a program, a compiler pass inspects and manipulates the structure of a
program. A program consists of an expression, which itself may contain further subexpres-
sions. Passes operate recursively, transforming expressions and subexpressions of the source
language into expressions of the target language. Programs are internally represented as
abstract syntax trees (ASTs), where a root node is an expression and its children nodes are
subexpressions.

A compiler pass, in general, is a function that takes a source program in one language
and returns a target program in another language. However, what we want to visualize
is not the general, abstract compiler pass, but rather the effects of a compiler pass on a
specific, concrete program. We will then refer to the associations between subexpressions
of source and target programs as a concrete compiler pass.

3 Task Analysis

For each CPSC 411 assignment, student groups of three are given some base compiler and
some new language features, and are tasked with augmenting existing compiler passes to
support them or adding new compiler passes. As an aid for the assignments without revealing
exactly how the compiler passes are implemented, SecondPass takes a source program and
provides a visualization for each compiler pass. We divide the tasks students can accomplish
with SecondPass in the following categories:

T1. Comparing the complexity of compiler passes:

1. Comparing the amount of generated target code to the amount of source code

2. Comparing the amount of change in the structure of the target code from the
source code

3. Estimating the distribution of work needed to implement the compiler passes

T2. Understanding the nature of the compiler passes:

1. Comparing how different kinds of expressions are compiled

2. Exploring how the program contexts of expressions change due to compilation

3. Identifying the correct target code given some source code

We integrate these tasks into the scenarios presented in Subsection 1.1.
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3.1 Pass Triage

To begin tackling a CPSC 411 assignment, student groups must figure out how to divide the
work among themselves. This requires an understanding of the complexity of the compiler
passes. Specifically, a compiler pass that generates more target code is considered as more
complex (T1.1), but one that moves code around a lot is more complex as well (T1.2).
These can be gleaned from the overview visualization of the compiler passes given some
well-chosen source programs. With this knowledge, students are ready to create an informed
distribution of labour within their teams (T1.3).

3.2 Compiler Exploration

While students are given language definitions of the source and target programs for each
compiler pass, the relationship between the source and target languages is not always clear,
and may require additional pages of documentation to explain. Furthermore, these language
definitions, which come in the form of a BNF grammar, are static and abstract, often making
it more difficult to intuitively get a sense of how the textual documentation links to the
symbols of the BNF grammar and their relationships across languages.

In order to gain insight about a compiler pass, students must create a concrete source
program, map the concrete program back into the abstract BNF grammar, glean the seman-
tic relationship to the target language through the textual documentation, and then map
the target language’s BNF grammar down to some concrete target program generated by
the reference compiler. A student’s mental model of a compiler pass is frailly constructed
through frequent context switches between a student’s IDE, the reference compiler, the
textual documentation, and the source and target language specifications, costing students
time and efficiency! There are too many links that must be maintained in the student’s
memory.

Students require a way to explore a compiler pass, browse its transformations, and gain
intuition about what the compiler pass does and how it works (T2.1). This model should
reduce the number of contexts that a student must use to build their understanding. Lastly,
a student must be able to discover semantic information about the compiler pass without
compromising the a context that provides both concrete source and concrete target programs
(T2.2).

3.3 Compiler Debugging

As with all complex systems, compiler passes are prone to error. When students have a
failing test case, they can refer to SecondPass to see what the given test case should produce,
but most importantly they understand why by following the flow of source expressions. In
this way, the visualization is acting as an interactive and executable documentation of the
behaviour of a certain pass. Students require a method for querying a reference compiler
to gain a deeper understanding how certain complex aspects of passes are implemented
(T2.3). Equipped with this better understanding, they are better prepared for creating
correct compilers.
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Data Attribute (Type) Cardinality Mark
Node Name (Categorical) Dozens Shape (text)

Intra-AST Link None Dozens Containment (indentation)
Inter-AST Link Pass name (Categorical) Dozens Connection (flows)

Figure 2: A summary of our network data with attributes, cardinality, and mark.

4 Data Abstractions

A summary of our data abstraction is shown in Figure 2. We now describe how programs
are represented as trees (ASTs), with intra-AST links representing program indentation and
inter-AST links representing compilation.

4.1 Program Representation

Recall that the internal representation of a program is an AST. This is merely a specialized
tree, which in turn is a directed acyclic graph where nodes have at most one parent. Although
we will be dealing with more general graphs, for clarity we continue to refer to the portion
of a graph that corresponds to a program as an AST.

Each node of an AST is a subexpression of the program, and directed edges between
nodes point from parent nodes to children nodes. These nodes only have one attribute:
the name of the subexpression. Often we will fix the orientation of the tree so that edges
implicitly point downwards. For instance, given the program (if (< a b) c d), the AST
looks like the following tree on the left:

(if (< a b) c d) if

/ | \ / | \

(< a b) c d < c d

/ \ / \

a b a b

Some representations will use only the prefix of non-leaf expressions as the nodes, like in
the tree on the right above. Although more concise, we will not be using this representation,
since we want to highlight each subexpression; a compiler pass is ultimately a recursive
transformation of an AST by inspecting each subexpression.

A node may also have several relevant derived attributes. An important one the node
depth, a sequential attribute counting how many edges it is away from the root. A compiler
visualization can use this information to show how much a given pass “flattens” a program.
Another sequential attribute is the number of target nodes pointed to by a source node for
a given pass, which can be useful in visualizing how much that pass “expands” a program.

There is one more property of programs to consider: geometry. Students and pro-
grammers don’t deal with the abstract tree-form of programs, but rather with source code
directly, which often has a fixed shape on the screen. A compiler pass visualization, then,
must take into consideration the position of subexpressions relative to each other in a given
program. This can be done by grouping expressions with parentheses and/or indentation.
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4.2 Compiler Representation

A concrete compiler pass involves the ASTs of a source program and a target program.
The pass transforms a node from the source AST to zero or more nodes in the target AST.
Therefore, we have additional directed edges from source nodes to target nodes, and we
can define a concrete compiler pass as a set of these edges from target to source nodes.
For example, if the above program compiles to (let ([p (< a b)]) (if p c d)), then
the (< a b) source node may point to the target nodes (< a b) and p. Note that these
directed edges are distinct from the edges within a single AST. Formally, we assign each
directed edge a categorical attribute, where inter-AST edges are marked with the relevant
compiler pass name, and intra-AST edges are marked with some null value.

4.3 Dataset

The total dataset that we work with for some arbitrary source program is then a directed
graph consisting of the three ASTs representing the source, intermediate, and target pro-
grams, and two sets of directed edges from source to intermediate and intermediate to target
ASTs representing the two concrete compiler passes. For the tasks at hand in Section 3, we
expect to see small source programs with AST node sets in the cardinality range of dozens,
which we infer from the set of test programs used for the reference compiler for CPSC 411.
Correspondingly, the cardinality of compiler pass edge sets is also in the range of dozens.

5 Related Work

We separate related work into three subsections: visualizations of internal compiler im-
plementations for educational purposes, visualizing compiler optimizations for correctness,
and visualizing transformations over source code directly. We find that our solution more
closely matches transformations over source code directly, rather than visualizing compiler
implementations or optimizations.

5.1 Visualizations of Compiler Implementations

Visualizing compiler implementations for educational purposes has been studied in the field
of computer science education for many decades, dating back to the late 1980s. One of
the first instances of this was the University of Washington Illustrated Compiler (ICOMP)
(2). ICOMP was a tool in conjunction with the course compiler Mplzero, which students
had to understand and modify throughout the course. ICOMP allowed the students to
visualize the data structures used internally by the compiler (such as an AST or finite
state machine) and updated the visualizations at various breakpoints during compilation.
Multiple windows and highlighting linked the visualization with the tabular format of the
data structure, as well as highlighting the source program text, if applicable. The authors
specified that the visualization worked over “moderately large source programs” given by
the user. The visualization enabled a better understanding of the internal data structures
used by the compiler, and how they transformed through the compilation process.

VAST (1) is another tool for visualizing compiler instrumentation. This tool is specifi-
cally designed to aid students’ understanding of parsing source program text into an AST.
A student sees the textual representation of the source program highlighted as the parser
steps through the program text. A corresponding AST is constructed and displayed as a
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triangular vertical node-link diagram. The authors specify that they expect the generated
trees to be “big and without any fixed structure (symmetry, width or height)”. As a result,
VAST has a larger window showing a focused subtree and a smaller overview window with
the entire AST.

While the overall goal of our visualization is similar to both VAST and ICOMP, there
are some key differences. In CPSC 411, the students build their own compiler, so we cannot
include the source code in our visualization as ICOMP does. Additionally, this compiler
does not have to perform any parsing to create an AST. Furthermore, the ICOMP compiler
is a single-pass compiler, whereas the CPSC 411 compiler is a multi-pass compiler. Finally,
as mentioned previously, our proposed solution deals with source program text rather than
the AST directly.

5.2 Visualizations of Compiler Optimizations

VISTA (7) is a system for interactive code improvement, specifically for the domain of em-
bedded systems applications. VISTA works over assembly and Register Transfer Language
(RTL) programs. It displays source program instructions in squares representing blocks
with arrows between them indicating control flow. The left-hand side of VISTA displays
a list of transformations that can be performed, as well as buttons labelled with arrows
that allow the user to step through applying a transformation. As the user steps through a
transformation, the instructions that change are highlighted.

CCNav (4) is another tool for visualizing compiler optimizations in assembly code. CC-
Nav displays the source code text directly beside the disassembled binary code text, along
with multiple other views of the call graph and function inlining. Since a single line of source
code may span multiple lines of assembly code, CCNav has a separate window for displaying
a highlighted source code line with its corresponding assembly code without context, that
is, not in the view with both programs side by side.

VISTA and CCNav display source program text directly, similar to our solution. How-
ever, in VISTA, transformations are done in place, and changes between transformations
are highlighted in the transformed program. To prevent the user having to step back and
forth to see the program changes, our solution displays the programs side by side for easier
comparison, like in CCNav. Since our solution focuses on passes that perform small changes
on the source program, we will not encounter the issue of a single line of code spanning
multiple lines.

5.3 Visualizations of Transformations over Source Code

MieruCompiler (5) is an educational compiler with similar goals to ICOMP. However, Mieru-
Compiler also visualizes the static source code and assembly code, and implements “horizon-
tal slicing”. Horizontal slicing is highlighting a particular expression in the source program
text along with the corresponding compiled code in the target program text, and vice versa.
The static source program text and assembly text are displayed side by side. However,
MieruCompiler compiles a subset of C directly to assembly in a single pass, so there is no
visualization or horizontal slicing of intermediate languages.

Code Flows (6) visualizes detailed changes to source code for understanding fine and
mid-level scale changes between C++ files. This visualization allows programmers to get
a global overview of the changes to a source code file as well as find where code may have
been deleted, split, or merged. Versions of a file are displayed as horizontally mirrored icicle
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plots side by side, with paths between matching fragments of code. These paths are shaded
as tubes and coloured cyclically to better differentiate between them.

Vis-a-Vis (3) is a “meta-visualization” linking the source code of a visualization algorithm
to the generated visualization. It enables comparison of the visualizations generated by the
algorithm as the user edits the source code. When hovering over a visualization in a certain
state of the algorithm, a tooltip appears showing the differences between the source code at
that state compared to the current state.

These projects are the most similar to our solution. However, the MieruCompiler does
not trace the flow between expressions in the source program to the compiled program, but
uses highlighting instead. This makes it difficult to get an overview of the changes made to
the source program. In contrast, Code Flows does visualize the flow between expressions in
different versions. However, Code Flows is better optimized for larger programs, as it does
not display the source program text directly. The visualization also is static, and does not
allow for selecting particular expressions to track their flow. Vis-a-Vis is interactive, but
heavily geared towards visualization algorithms and comparing visualizations across versions
of the algorithm.

6 Visualization

Our proposed solution is to create an interactive visualization, where students may input
an arbitrary source program to see an overview of the compilation process. By analyzing
this overview, the students may pinpoint a particular pass that is of interest, then switch
to a detailed view of the pass. Alternatively, if the student is implementing a particular
pass, they may query multiple source programs and analyze how the programs change in
the detailed view of the pass. We elaborate on these views in the following subsection, and
conclude with some high-level implementation ideas.

6.1 Design

6.1.1 Overview

Figure 3 presents a preliminary mockup for our overview visualization. Given some source
program, the target programs after A-normalization and instruction selection will be dis-
played next to it from left to right. The prefix of all parent AST nodes are circled, with
newly-generated nodes (i.e. target nodes that do not directly result from some source node)
in a darker hue. This provides an easy way to judge at a glance how much new code is
generated (T1.1).

Source nodes are connected to target nodes with lines, with a different hue for each pass.
If the lines cross each other a lot, this indicates that a lot of structural changes in the code
have occurred (T1.2). However, this can be misleading: In the instruction selection pass,
many crossings occur only because two large chunks of code have swapped places. We may
also consider bundling lines together to distinguish simple swapping of code blocks from
the more subtle but more complex structural changes, such as those in the A-normalization
pass.

If we scale up to more passes, the overview would expand horizontally. Note that the
difference in hue is only to distinguish neighbouring passes; for more than two passes, we
can alternate between two distinct hues, rather than choosing a hue for each pass.
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Figure 3: A mockup of an overview visualization of the two passes.

6.1.2 Detailed View

Figure 4 presents a preliminary mockup for our detailed visualization, focusing only on the
A-normalization pass from the overview. Now, entire subexpressions are highlighed; this
makes it clear what source subexpressions will be compiled into (T2.1). The user can select
two expressions in the program. If they are nested, then the outer expression is highlighted,
while the inner subexpression is boxed. The highlighted areas and the boxed areas are
connected across a compiler pass, respectively. This allows the user to not only identify
what an expression compiles to, but also what its outer context compiles to as well (T2.2).

We will add an interactive component to the detailed view: When the user hovers
over some subexpression, it and the corresponding subexpression in the other program will
both be highlighted, and when the selection is made by clicking on the subexpression, the
connection appears.

We have not yet determined the best way to travel from the overview to the detailed
view and back. We may also consider more features in the detailed view, such as the ability
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Figure 4: A mockup of a detailed view of the A-normalization pass.

to select more than two expressions, or a detailed view that focuses on parts of all three
programs.

6.2 Implementation

To implement our proposed solution we have divided our system into three packages.

1. The Racket Compiler: We seek to instrument the reference compiler for CPSC
411 written in Racket.3 This compiler does not connect source expressions with target
expressions in each pass, so this is a necessary instrumentation step. We will be writing
the instrumented compiler in Racket so as to reuse as much of the reference compiler
as possible and not rewrite it.

2. The Server: We will run a Node4 and Express5 server written in TypeScript6 which
will serve The Frontend, reroute requests to The Racket Compiler, and process the
dataset into a usable JSON format. Node, Express and TypeScript were selected as
they are familiar and require minimal overhead to set up.

3. The Frontend: The client side piece of our system will be written in TypeScript
using React7 and axios8 to handle requests. We will leverage the D3.js9 framework to
display the interactive visualization to users. We anticipate this piece of our system
to house the majority of its complexity and time in implementation. We have chosen
to use D3.js despite unfamiliarity with the framework for its popularity and apparent
flexibility.

All services will be hosted on the Software Practice Lab’s website, https://se.cs.ubc.
ca/.

3https://racket-lang.org/
4https://nodejs.org/en/
5https://expressjs.com/
6https://www.typescriptlang.org/
7https://reactjs.org/
8https://github.com/axios/axios/
9https://d3js.org/
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Currently, we foresee the largest challenge to our implementation as being our collec-
tive unfamiliarity with D3.js (or any other visualization framework). Spending more time
learning how to use this framework may cause small changes to our current implementation
plans if we find it will not service our needs.

6.3 Results

Following the creation of SecondPass, we seek to facilitate the following scenarios, each
analogous to one task in Section 3.

6.3.1 Pass Triage

A CPSC 411 student and her team have been given 21 compiler passes to implement in
seven days. Looking to evenly distribute the work of the compiler passes between herself
and her two teammate, she uses SecondPass. She visit the overview page and inputs a
sample source program, and mouses over expressions looking to discover passes that incur
large changes to its program, whether that be by reordering or locating nodes in the graph
with high degree. Armed with an intuition for which passes will require the greatest effort,
she assigns passes to each team member.

6.3.2 Compiler Exploration

Confused reading the documentation for a compiler pass named select-instructions, the
student returns to SecondPass and enters the detailed view. Inputting a sample source
program and viewing the select-instructions pass, she explores the mechanics of the
program transformation. She clicks a subexpression to keep its flow highlighted and contin-
ues mousing over other subexpressions to highlight their flows and compare how they differ.
She begins to coalesce an understanding of what select-instructions does.

6.3.3 Compiler Debugging

While finishing up work on the select-instructions pass of her compiler, the student gets
stuck on a particular failing test cases. She sees one expression in the target output and has
no idea where it originated from. She again returns to SecondPass, visits the detail view and
inputs the source program from her failing test case. She then mouses over the seemingly
extraneous expression in the target program and traces it back to the an expression in the
source program, and begins to make sense of her mistake.

7 Milestones and Schedule

Our proposed development schedule of SecondPass is as seen in Table 1. In this section we
discuss our progress so far, as well as look to the rest of the schedule ahead of us.

7.1 Development So Far

So far we have built a proof of concept overview page that reacts to mouse-over events
with red highlighting as seen in Figure 5, and as well we have successfully instrumented the
Racket Compiler.
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Figure 5: An early work in progress screenshot of SecondPass

After building our first prototype with D3.js, we began considering switching to jquery,
as it may be too heavyweight for our current implementation goals in the frontend, however
do not anticipate this change to affect our current schedule.

Another, unscheduled, task that grew in scope to a significant milestone has been the
transformation of the compiler’s output data into JSON useable by JavaScript libraries in
the frontend. This new schedule item is seen typeset in red in Table 1.

7.2 Schedule in the Future

We intend to spend upward of 140 hours, and have distributed 137 of them generously in
the schedule. We aim to have our minimum viable product deadline as early as possible to
create a buffer for unforeseen complications.

Development of the frontend, the core visualization, and conducting small user studies
are all to be joint efforts. However, Paulette and Jonathan took the lead on the Racket
compiler, while Braxton led service orchestration and server development.
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Table 1: Project Schedule. Updates from the proposal are typeset in red.

Milestone Description Hours Deadline

Pitch Prepare slides, record video 1 Oct. 1
Proposal Refine ideas, write proposal 10 Oct. 23

Learn D3.js Read documentation, experiment with D3.js 12 Nov. 1
Scaffold Project Set up the repository, gather dependencies 4 Nov. 1
Build Prototype Hard coded minimal prototype 20 Nov. 10
Racket Compiler Instrument the reference compiler 16 Nov. 10

Data Transformation Write transformation program 5 Nov. 10
Updates Refine abstractions, update writeup 5 Nov. 17

Peer Project Review Prepare for project exchange 4 Nov. 19
Build MVP Build SecondPass 20 Dec. 1
Polish Viz Iterate on MVP 10 Dec. 6

Final Presentation Record video, rehearse for Q&A 10 Dec. 10
Final Report Finalize the paper 20 Dec. 14
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