
Visualizing Compiler Passes with LastPass

Paulette Koronkevich
pletrec@cs.ubc.ca

Braxton Hall
braxtonh@cs.ubc.ca

Jonathan Chan
jcxz@cs.ubc.ca

Figure 1: The main screen of LastPass, with an overview at the top and a detailed view at the bottom.

Abstract

In UBC’s upper-year compilers course CPSC , stu-
dents are tasked with adding features to a compiler ev-
ery week. The compiler is comprised of multiple passes
over some source program to gradually transform it
to an assembly program. Unfortunately, students cur-
rently do not have a good tool to explore the compiler
and understand how certain programs may be compiled.
We present LastPass1, an interactive multi-pass com-
piler visualization tool for the CPSC  compiler. Using
our tool, students can gain an intuitive understanding
of the structural transformations that the compiler per-
forms, trace subexpressions through compilation, and
interactively examine compilation on an a pass-by-pass
level.

1 Introduction

A compiler from a high-level language down to an
assembly-like language traditionally involves a sequence
of compiler passes, each of which performs a specific
transformation on an input program to produce an out-
put program for the next pass. In an undergraduate

1formerly SecondPass2
2formerly FirstPass3
3formerly Untitled Compiler Pass Visualization

compilers course, the goal is to understand why these
passes are necessary and how each pass is constructed.
One difficulty in the learning process is that the com-
piler pass implementation itself may be too abstract to
gain an intuitive understanding of its purpose, while
merely reading the input and output programs of the
pass does not reveal much about the transformation.

In this paper, we present LastPass, a multi-pass
compiler visualization for UBC’s upper-year compilers
course CPSC  that aims to elucidate the connec-
tions between input and output program substructures
in each compiler pass. It also aims to provide an in-
tuitive understanding of the kind of structural trans-
formations that compilers do. Given a particular input
program, it presents intermediate and final programs –
the results of multiple stages of compilation – side by
side, with interactive flows between related components
of input and output programs.

We limit the scope of this project to only two par-
ticular fundamental compiler passes: a-normalize and
select-instructions, described in detail in Section 2.
Furthermore, as this is primarily a pedagogical tool,
it focuses on effective visualization of relatively small
input programs, as opposed to existing visualizations
which focus on large source code files or optimizing com-
piler passes.

1.1 Motivation

In the fourth week of CPSC : Introduction to Com-
piler Construction, a student and her two project team-

mates are tasked with introducing control flow to their
compiler. As with every week, she looks at the language
specifications introduced in weekly batches, selects an
arbitrary 7 of the 21 tasks presented, and starts work-
ing. Unknown to her at the time of task selection, two
of her selected tasks amount to half of this week’s work
for the entire team (when measured in hours of effort
or lines of code). Oblivious, she continues work on her
team’s compiler.

One large task has her scrolling up and down on the
course website, comparing the definitions of two lan-
guages that define the input and output of a particular
compiler pass. She attempts to build a mental model
of what the transformation is doing by looking at the
static definitions one at a time. She also uses a tool
called the Interrogator4 to assist her in building this
mental model. This tool allows her to query any con-
crete test program through the reference implementa-
tion of the particular pass. However, she discovers that
the tool erases her original queried test program from
the textbox, and provides the transformed output below
the textbox. The output has no interactive elements,
and she is forced to make comparisons between the test
program and output in her head.

The complexity of the compilers in CPSC  grows
with each passing week. Debugging equates to going
back to the language specifications and performing man-
ual language transformations before comparing them to
her generated output. The student can also use the In-
terrogator once again to query certain test cases and
trace the input and output of each transformation in
the entire compiler. However, seeing the large amount
of static textual output below the textbox, she quickly
gets lost in which programs correspond to inputs and
outputs of certain passes. She also has no way of know-
ing which generated assembly instructions correspond
to which expressions in her queried test program, and
is forced to make the connections in her head.

Building a compiler is hard enough already without
misestimating the distribution of work, poring over scat-
tered, static language definitions, or getting too few ex-
amples of how to make it right in the exact situations
where students’ bugs arise.

With LastPass, we aim to reduce these student frus-
trations by providing a tool that visualizes the programs
before and after transformation to effectively present
what a compiler is doing – without directly presenting
the solution. As domain experts who have taken under-
graduate compilers courses (including CPSC ) and
are intimate with their struggles, and who have worked
on other compilers as well, we have the experience and
the expertise to identify the relevant problems and pro-
pose an effective solution.

We begin in Section 2 with a description of the do-
main details relevant to the CPSC  compilers course.
Section 3 discusses relevant work in visualizing code
and compilers, and how existing solutions fall short
of our goals. We then outline the primary tasks stu-
dents are expected to complete throughout the course
in Section 4, as well as an abstracted representation of
programs and compiler passes which we manipulate in

4https://www.students.cs.ubc.ca/~cs-411/2019w2/

a10-interrogator.cgi

Section 5. We introduce our visualization and discuss
its design in Section 6, then detail the implementation
in Section 7. Section 8 examines possible use cases of
LastPass and results from informal user studies. The
strengths and limitations of LastPass and future work
are discussed in Section 9. Finally, we present our de-
velopment schedule in Section 10, and conclude in Sec-
tion 11.

2 Background

In CPSC , a compiler begins with a high-level pro-
gram and ends with an assembly program. But it does
not compile directly from the former to the latter in
one go, as a single-pass compiler would. Rather, it is a
multi-pass compiler, divided into many compiler passes
which sequentially compile a program in a high-level
language to programs in several intermediate languages.
The program that a compiler pass transforms is called
the source program and its output is the target program.
These programs are often written in different languages,
whose syntax can be specified by a BNF grammar. The
process of a multi-pass compiler is summarized in Fig-
ure 2.

2.1 Programs

A program begins as a string. Depending on the BNF
of the language it is written in, it then gets parsed into
an abstract syntax tree (AST). A tree is a special case
of a graph – specifically, a directed, acyclic graph, where
edges point to child nodes, and each child node has at
most one parent. This is the representation of a program
that a compiler handles.

In the CPSC  languages, all programs are expres-
sions, themselves containing further subexpressions. In
the AST representation, each expression is a node, and
subexpressions are its child nodes. For instance, given
the program text (if (< a b) c d), we can form the
following tree (with directed edges implicitly pointing
downwards):

(if)
/ | \

(<) c d
/ \

a b

We can see that nodes consist of their program text,
which we call the prefix for non-leaf nodes (if and <
in the example above), or the value for leaf nodes (a
through d above). Note also that the children of a node
have an order; (< a b) is certainly not the same thing
as (< b a).

2.2 Compiler Passes

A compiler pass involves the ASTs of a source program
and a target program. Starting with an arbitrary source
AST, it transforms it into a target AST by recursively
inspecting all nodes of the AST. Each source node may
produce zero or more target nodes.

Given some specific, concrete source AST, the com-
piler pass produces a concrete target AST, as well as
associations between source and target nodes due to
compilation. We refer to the collection of these asso-
ciations as a concrete compiler pass. As an example,
we show part of the concrete compiler pass between the

https://www.students.cs.ubc.ca/~cs-411/2019w2/a10-interrogator.cgi
https://www.students.cs.ubc.ca/~cs-411/2019w2/a10-interrogator.cgi

Figure 2: Overview of a multi-pass compiler. The initial source program gets transformed by the first pass into the first target program,
which is equivalent to the source program of the second pass. The second outputs a second target program, which becomes the
source program for the next pass. This process repeats until the final target program is reached. The intermediate source programs
are often written in an intermediate language (IL).

Figure 3: A source AST and a target AST, presented using the
same visualization in Subsection 2.1. The thick, red arrow is one
of the many inter-AST edges that represent a concrete compiler
pass. The other edges of the concrete pass are omitted from
this example to prevent occlusion.

source program (if (< a b) c d) and the target pro-
gram (let ([p (< a b)]) (if p c d)) in Figure 3.

As mentioned, we focus on two specific compiler
passes:

1. a-normalize, which sequentializes necessary com-
putational steps and makes control flow explicit;
and

2. select-instrucitons, which adds further informa-
tion necessary for sequential assembly programs,
such as converting function calls to jumps.

3 Related Work

We separate related work into three subsections: visual-
izations of internal compiler implementations for educa-
tional purposes, visualizing compiler optimizations for
correctness, and visualizing transformations over source
code directly. Transformations over source code include
compilation and user changes to source code (i.e. ed-
its for correctness). We find that our solution more
closely matches transformations over source code di-
rectly, rather than visualizing compiler implementations
or optimizations.

3.1 Visualizations of Compiler Implementations

Visualizing compiler implementations for educational
purposes has been studied in the field of computer sci-
ence education for many decades, dating back to the late

1980s. One of the first instances of this was the Univer-
sity of Washington Illustrated Compiler (ICOMP) (2).
ICOMP was a tool in conjunction with the course com-
piler Mplzero, which students had to understand and
modify throughout the course. ICOMP allowed the stu-
dents to visualize the data structures used internally by
the compiler (such as an AST or finite state machine)
and updated the visualizations at various breakpoints
during compilation. Multiple windows and highlight-
ing linked the visualization with the tabular format of
the data structure, as well as highlighting the source
program text, if applicable. The authors specified that
the visualization worked over “moderately large source
programs” given by the user. The visualization en-
abled a better understanding of the internal data struc-
tures used by the compiler, and how they transformed
through the compilation process.

VAST (1) is another tool for visualizing compiler in-
strumentation. This tool is specifically designed to aid
students’ understanding of parsing source program text
into an AST. A student sees the textual representation
of the source program highlighted as the parser steps
through the program text. A corresponding AST is con-
structed and displayed as a triangular vertical node-link
diagram. The authors specify that they expect the gen-
erated trees to be “big and without any fixed structure
(symmetry, width or height)”. As a result, VAST has a
larger window showing a focused subtree and a smaller
overview window with the entire AST.

While the overall goal of our visualization is similar to
both VAST and ICOMP, there are some key differences.
In CPSC , the students build their own compiler, so
we cannot include the source code in our visualization as
ICOMP does. Additionally, this compiler does not have
to perform any parsing to create an AST. Furthermore,
the ICOMP compiler is a single-pass compiler, whereas
the CPSC  compiler is a multi-pass compiler.

3.2 Visualizations of Compiler Optimizations

VISTA (8) is a system for interactive code improve-
ment, specifically for the domain of embedded sys-
tems applications. VISTA works over assembly and
Register Transfer Language (RTL) programs. It dis-
plays source program instructions in squares represent-
ing blocks with arrows between them indicating control
flow. The left-hand side of VISTA displays a list of
transformations that can be performed, as well as but-
tons labelled with arrows that allow the user to step

through applying a transformation. As the user steps
through a transformation, the instructions that change
are highlighted.

CCNav (4) is another tool for visualizing compiler
optimizations in assembly code. CCNav displays the
source code text directly beside the disassembled bi-
nary code text, along with multiple other views of the
call graph and function inlining. Since a single line of
source code may span multiple lines of assembly code,
CCNav has a separate window for displaying a high-
lighted source code line with its corresponding assembly
code without context, that is, not in the view with both
programs side by side.

In VISTA, transformations are done in place, and
changes between transformations are highlighted in the
transformed program. To prevent the user having to
step back and forth to see the program changes, our
solution displays the programs side by side for easier
comparison, like in CCNav. Since our solution focuses
on passes that perform small changes on the source pro-
gram, we will not encounter the issue of a single line
of code spanning multiple lines. Since CCNav focuses
on visualizing compiler optimizations, there is a greater
focus comparing the source code to the generated as-
sembly, rather than the intermediate representations.

3.3 Visualizations of Transformations over Source
Code

MieruCompiler (5) is an educational compiler with sim-
ilar goals to ICOMP. However, MieruCompiler also vi-
sualizes the source code text and assembly code text,
and implements “horizontal slicing”. Horizontal slicing
is highlighting a particular expression in the source pro-
gram text along with the corresponding compiled code
in the target program text, and vice versa. The source
program text and assembly text are displayed side by
side. However, MieruCompiler compiles a subset of C
directly to assembly in a single pass, so there is no visu-
alization or horizontal slicing of intermediate languages.

Code Flows (7) visualizes detailed changes to source
code for understanding fine and mid-level scale changes
between C++ files. This visualization allows program-
mers to get a global overview of the changes to a source
code file as well as find where code may have been
deleted, split, or merged. Versions of a file are displayed
as horizontally mirrored icicle plots side by side, with
paths between matching fragments of code. These paths
are shaded as tubes and coloured cyclically to better dif-
ferentiate between them.

Vis-a-Vis (3) is a “meta-visualization” linking the
source code of a visualization algorithm to the gener-
ated visualization. It enables comparison of the visu-
alizations generated by the algorithm as the user edits
the source code. When hovering over a visualization in
a certain state of the algorithm, a tooltip appears show-
ing the differences between the source code at that state
compared to the current state.

These projects are the most similar to our solution.
However, the MieruCompiler does not trace the flow be-
tween expressions in the source program to the compiled
program, but uses highlighting instead. This makes it
difficult to get an overview of the changes made to the
source program. In contrast, Code Flows does visual-
ize the flow between expressions in different versions.

However, Code Flows is better optimized for larger pro-
grams, as it does not display the source program text
directly. The visualization also is static, and does not
allow for selecting particular expressions to track their
flow. Vis-a-Vis is interactive, but heavily geared to-
wards visualization algorithms and comparing visual-
izations across versions of the algorithm.

4 Task Analysis

For each CPSC  assignment, student groups of three
are given new language features to implement. They
must augment their compilers to support these features
by modifying compiler passes from previous assignments
and/or by adding new passes. As an aid for the assign-
ments without revealing exactly how the compiler passes
are implemented, LastPass takes a source program and
provides a visualization for each compiler pass. We di-
vide the tasks students can accomplish with LastPass
in the following categories:

T1. Identifying and comparing complex compiler
passes:

1. Comparing the amount of generated target
code to the amount of source code

2. Identifying structural changes between source
and target code

3. Estimating the distribution of work needed to
implement the compiler passes

T2. Understanding the nature of the compiler passes:

1. Comparing how different kinds of expressions
are compiled

2. Identifying the result of compiling subexpres-
sions in context

3. Identifying the result of multiple compiler
passes to understand their overall effect

We integrate these tasks into the scenarios presented
in Subsection 1.1.

4.1 Dividing the Work

To begin tackling a CPSC  assignment, student
groups must figure out how to divide the work among
themselves (T1.3). This requires an understanding of
the complexity of the compiler passes. Specifically, a
compiler pass that generates more target code might
be considered as more complex (T1.1), but one that
moves code around a lot might be more complex as
well (T1.2). These can be gleaned from the overview
visualization of the compiler passes given some well-
chosen source programs. With this knowledge, students
are ready to create an informed distribution of labour
within their teams.

4.2 Compiler Exploration

Although students are given language definitions of the
source and target programs for each compiler pass, the
relationship between the source and target languages
is not always clear, and may require additional pages of
documentation to explain. Furthermore, these language
definitions, which come in the form of a BNF grammar,

are static and abstract. This often makes it more dif-
ficult to intuitively get a sense of how the textual doc-
umentation links to the symbols of the BNF grammar
and their relationships across languages.

In order to gain insight about a compiler pass, stu-
dents must create a concrete source program, map the
concrete program back into the abstract BNF grammar,
glean the semantic relationship to the target language
through the textual documentation, and then map the
target language’s BNF grammar down to some concrete
target program generated by the reference compiler. A
student’s mental model of a compiler pass is frailly con-
structed through frequent context switches between a
student’s IDE, the reference compiler, the textual doc-
umentation, and the source and target language specifi-
cations, costing students time and efficiency! There are
too many links that must be maintained in the student’s
memory.

Students require a way to explore a compiler pass,
browse its transformations, and gain intuition about
what the compiler pass does (T2.1), which might not
be evident without also knowing what the pass immedi-
ately before or after it does (T2.3). This model should
reduce the number of contexts that a student must use
to build their understanding. A student must also be
able to discover semantic information about the com-
piler pass without compromising a context that pro-
vides both concrete source and concrete target programs
(T2.2).

4.3 Compiler Debugging

As with all complex systems, compiler passes are prone
to error. When students have a failing test case, they
can refer to LastPass to see what the given test case
should produce, but most importantly they understand
why by following the flow of source expressions. In this
way, the visualization is acting as an interactive and ex-
ecutable documentation of the behaviour of a certain
pass. Students require a method for querying a refer-
ence compiler to gain a deeper understanding how cer-
tain complex aspects of passes are implemented (T2).
Equipped with this better understanding, they are bet-
ter prepared for creating correct compilers.

5 Data Abstractions

In this section, we describe how programs are repre-
sented as trees (ASTs), and how a concrete compiler
pass is defined over a source AST and a target AST.
We conclude with a description of our dataset and the
summary of our abstractions, which is also summarized
in Figure 4.

5.1 Program Representation

Just as the compiler manipulates the ASTs of pro-
grams, so does LastPass to produce visualizations. Ab-
stractly, our programs are collections of nodes and di-
rected edges. Because we expect students to use our
tool to visualize small example programs for the tasks
described in Section 4, the cardinality of the nodes and
edges are in the dozens.

Each node’s program text is a categorical attribute.
They also have another categorical attribute, whether
it is a leaf node or a non-leaf node, derived from the
absence or presence of outgoing directed edges. Finally,
as child nodes are ordered, each edge has a sequential

attribute indicating its position relative to other sibling
nodes. These are summarized in the first two rows of
Figure 4.

In the miniature tree visualization in Subsection 2.1,
we encode nodes as text, edges using line marks, leaf or
non-leaf status by the absence or presence of surround-
ing parentheses, the directional component of the edges
using the vertical position channel, and the sequential
attribute of the edges (and by extension, the nodes they
point to) using the horizontal position channel. How-
ever, this is not the natural representation of programs
for programmers. For the CPSC  languages, the ex-
ample program would look more familiar like this:

(if (< a b)
c
d)

This is the style we use in our visualization, which is
discussed in detail in Section 6.

5.2 Compiler Representation

Given some source program, what we want to visualize
is not the general effect of a compiler, but rather the
concrete compiler pass associating source AST nodes
with target AST nodes. These correspond to additional
directed edges between source and target nodes. To
distinguish these edges between nodes of different ASTs
from the edges within a single AST, we call the former
inter-AST edges and the latter intra-AST edges. The
number of outgoing edges from a single source node for
the compiler passes we’ve chosen does not exceed 1; for
the remaining compiler passes in the course, they are
unlikely to exceed 2 or 3. Therefore, the cardinality of
these edges is in the dozens, similar to the cardinality of
the nodes. Again, these are summarized in the second
and third rows of Figure 4.

An inter-AST edge connects a source AST node to a
target AST node. We can redundantly encode this in-
formation as a derived categorical attribute on the AST
nodes by assigning a unique tag to the the source node
and the target node for every inter-AST edge. Nodes
that have no indicent inter-AST edges remain untagged
and have some null value for this attribute. This repre-
sentation is mostly for convenience of implementation.

In the miniature visualization in Figure 3, intra-AST
edges are again encoded using line marks with their at-
tributes encoded in the position channel. One inter-
AST edge is shown as an arrow (i.e. a line mark with
endpoint shapes). In LastPass, we visualize programs as
indented text, not as the trees above; this figure merely
illustrates how source and target nodes may be con-
nected.

5.3 Dataset and Summary

Given some arbitrary source program, our dataset con-
tains an ordered list of three ASTs for the source pro-
gram, the intermediate program after a-normalize, and
the target program after select-instructions. Each
AST is a tree composed of nodes and intra-AST edges.
We also have an ordered list of two sets of inter-
AST edges, corresponding to the two concrete compiler
passes. Finally, we have an ordered list of three lan-
guage names and an ordered list of two compiler pass
names. The various kinds of data items are summarized

Domain Data Cardinality Attributes [Type] Derived Attributes [Type]
AST node Dozens Program text [Categorical] Leaf/Non-leaf [Categorical]; Tag [Categorical]

Intra-AST edge Dozens Position [Sequential] None
Inter-AST edge Dozens None None
Language names Three None None

Pass names Two None None

Figure 4: A summary of our network data with attributes, cardinality, and mark.

in Figure 4. In general, if we want to consider n com-
piler passes, then we would have n pass names, n + 1
language names, and n + 1 ASTs.

6 Solution and Design

Our solution is to create an interactive visualization,
where students input an arbitrary source program to
see an overview of the compilation process. Providing
an overview of the compilation process allows students
to pinpoint a particular passes of interest (T1). An
overview is not sufficient to understand the effects of
certain passes; to study and understand a particular
pass, a student can also choose to view it in detail (T2).

We elaborate on the overview and detailed views in
the following subsections. However, we first address vi-
sually encoding program ASTs as code that students are
used to seeing. A given node is displayed as its program
text with the visual encoding of its child nodes either to
the right on the same line, separated by spaces, or below
on separate lines with indentation. In other words, the
intra-AST edges and their ordering are encoded using ei-
ther only the horizontal position channel with left-right
ordering, or the horizontal position channel (as inden-
tation) and the vertical position channel with top-down
ordering. The leaf/non-leaf attribute of nodes are en-
coded by the absence or presence of parentheses before
the node’s prefix and after the node’s children. This
corresponds to the conventional arrangement of code
programmers use.

6.1 Detailed View

The detailed view, shown in Figure 6, gives students an
up-close interrogation of the relationship between two
concrete programs on either side of a compiler pass.
The detailed view shows the source program and target
program of a pass side by side, in their textual repre-
sentation. The textual representation allows students
to directly identify expressions of interest. To facil-
itate a user’s exploration of the relationship between
source and target programs, a user can hover over a pro-
gram expression in the source program and see the cor-
responding compiled expression in the target language
highlighted.

The first prototype for the detailed view included
highlighting the source expression text and correspond-
ing target expression text by changing the colour of the
text to a new colour. This early experiment can be seen
in Figure 5. However, identifying smaller expressions
such as single-digit numbers in a large body of program
text becomes much more difficult. An explicit connec-
tion on screen guides the student directly to the corre-
sponding target program text. Additionally, we wished
to eventually support highlighting multiple expressions,
and changing the colour of the text in a subexpression

would remove the connection of colour that it has with
its highlighted parent expression.

Instead, when a student hovers over an expression
in the source program, the expression and its children
are outlined with a coloured box. In Figure 6 the ex-
pression beginning with lambda is hovered over. The
corresponding expression in the target program, based
on the inter-AST edges of the pass, is also outlined.
Early prototypes used solid coloured boxes, but putting
program text against these coloured boxes reduced the
text’s contrast and in turn its readability. To combat
this, we took inspiration from containment diagrams,
and enclosed the text of a node and its subtree with a
coloured box outline, giving a visual indicator of which
expression is being hovered over. A curve is drawn be-
tween the boxes to display the inter-AST edge of the
pass. We refer to these connections as flows. Displaying
connections in this way shows how certain subexpres-
sions are compiled the in context of the larger concrete
source and target programs (T2.2).

To aid the student in discerning which expressions
have hover events, we use text colour (blue and black)
to encode a hover event’s presence or absence. Blue text
indicates program expressions that directly compile to
or are directly compiled from an expression in a neigh-
bouring program, and thus allows for a cursor hover to
display a flow. Expressions that neither directly compile
from any expressions in the source program nor compile
to another program are shown in black. These expres-
sions often appear in code added by the final pass, as
there are no additional passes afterwards for them to be
compiled to.

To compare the compilation of multiple expressions
(T2.1), students may click to pin a flow. Figure 7 shows
an example of pinned and hovered flows. The node pre-
fix text is bolded to indicate that the flow has been
pinned. Once a flow has been pinned, the next flow
on hover appears in a different colour. The flows cycle
through the colours yellow, pink, and green, also seen in
Figure 7. These colours, along with the blue for hover-
able elements, are together colourblind-safe (6). There
is no limit to the number of flows that can be pinned;
we discuss how this can be a limitation further in Sub-
section 9.2.

Allowing multiple expressions to be seen at once
presents its own challenges. As two selected expres-
sions may either horizontally or vertically aligned, one’s
box may occlude another bounding box. We attempted
reducing the width of an expression’s bounding box ac-
cording to its node depth to reduce this occlusion. Un-
fortunately, as the bounding boxes needed to be thin to
prevent occluding the program text, we found that we
had few pixels to work with. This feature, shown in Fig-
ure 8, was removed from our final solution as we believe
that the flows add sufficient redundancy in encoding the

Figure 5: A prototype of a detailed view of the a-normalize and select-instructions passes, with one subexpression in each
program coloured in red.

Figure 6: A detailed view of the select-instructions pass.

Figure 7: A detailed view of the select-instructions pass. Two flows have been pinned (indicated by the bold text parent
expression), one flow appears on hover.

Figure 8: Bounding boxes in the detailed view with variable
border thicknesses depending on node depth.

selection of an expression to offset any possible misread-
ing of the visualization due to occlusion.

With multiple flows pinned, one may intersect an-
other. A näıve solution may attempt to discern an or-
dering of the flows based on the node depth of their cor-
responding expressions and draw them opaque on top of
one another. However, the node depth order may not be
preserved from source to target programs in a compiler
pass, so an ordering that works for the source program
may not work for the target program. To account for
this, flows are made to be semi-translucent so all flows
can be seen in full in the event of occlusion.

A flow can be unpinned by clicking on the expression
again. We also include a button to unpin all flows for
convenience.

Finally, instead of clicking on a single pass, the stu-
dent may select multiple passes. Alternatively, the stu-
dent may select an arbitrary source and target program
to see the effect of multiple passes on the source pro-
gram. This shows the effect of multiple passes on the
source program, with or without the intermediate rep-
resentations (T2.3). The student can continue hovering
to see flows and clicking to pin flows, as seen in Figure 9
and Figure 10.

6.2 Overview

The overview, shown in Figure 11, is intended to give
students a high-level understanding of the compilation
process.

An early design choice was to display programs from
left to right, using horizontal position to encode the
order in which programs are compiled. This shows
the compositional nature of the compiler, i.e that the

Figure 9: A detailed view of both the a-normalize and select-instructions passes applied.

Figure 10: A detailed view of the source program and the tar-
get program after the a-normalize and select-instructions

passes.

a-normalize pass is applied first to the source program,
followed by the select-instructions pass. Display-
ing the programs side by side, positioning them aligned
and on a common scale, allows students to compare the
lengths of the three programs and determine how much
code a given pass has generated (T1.1). Finally, the
overview also provides students with context of where
they are in the compilation process when in the detailed
view.

A prototype considered for our overview attempted
to communicate the compilation process by highlight-
ing each target program according to what has changed
between the source program. A mockup is given in Fig-
ure 12. The darker luminance highlights code that has
been added to the target program, while the lighter lu-
minance highlights code that has been compiled from
the source program of the pass. This overview provides
an easy way to distinguish how much code a given pass
has generated (T1.1), and where it has been generated.
However, it fails to show structural changes (T1.2).

We then moved to capturing this structural change
by showing the pass connections between the programs.
This required intentionally putting horizontal space be-
tween the programs in the overview to provide screen
space to draw connections between expressions in neigh-
bouring programs. The first mockup for this proposed
change can be seen in Figure 13.

Building on this prototype, we introduced translu-
cent flows between expressions like those in the detailed
view. Overlapping translucent connections had the
added benefit of drawing flow-like shapes of increased
luminance where groups of expressions moved together,
or small squares of increased luminance where flows
crossed each other, showing large structural changes.

We also emphasize that the overview is to be used to
detect high level structural changes (T1.2) rather than
understanding the compilation of each individual pro-

Figure 11: The overview visualization of the two passes.

gram expression. To bring further focus to the flows, we
abstract the programs from their textual details. Each
node of the program is replaced with a rectangle with
the same width, height, and position as the text cor-
responding to its name. This prevents students from
trying to read the smaller text. Showing the abstracted
program still allows the students to directly compare
the amount of code generated by each pass.

On hover, a text popup displays the name of the lan-
guage the hovered program is written in. Additionally,
an arrow is added between each program to further em-
phasize the compilation relationship between programs,
and displays the pass name in a popup on hover.

If we scale up to more passes, the overview would
expand horizontally. There are limitations to this ap-
proach, which we discuss in Subsection 9.2.

6.3 LastPass

As seen in Figure 1, LastPass is composed of both the
detailed view and the overview presented to the user in
a single faceted view. Putting both views on the screen
at the same time allows them to be linked. Selecting a
program in the detailed view decreases the luminance
of the same program in the overview, indicating where
in the overall compilation process the detailed view is
currently presenting.

Additionally, this allows the overview to double as
a control mechanism for the detailed view. When a
student is interested in studying a certain pass, they
can click on that program in the overview to bring it
into the detailed view, and click it again to remove it.

Lastly, an optional sidebar view is revealed when
clicking on the hamburger icon, as seen in the upper-
right corner of Figure 1. It shows a list of program
names and pass names that can be hidden in a collapsi-
ble sidebar menu, where each name is listed in order
of the compilation process. This provides users with a
view of the data where program and pass names are not
hidden behind hover events, and users can quickly find
a pass by name. Clicking a program name in the sidebar
view manipulates the overview and detailed view just as
clicking a program in the overview would. Additionally,
a checkbox is display attached to each program and pass
name, where selection denotes whether that program or
pass is selected in the detailed view.

7 Implementation

The architecture of our implementation is divided into
two parts: the backend, which contains the com-
piler; and the frontend, which contains the visualiza-
tion. LastPass is hosted on the Software Practice
Lab’s website, https://se.cs.ubc.ca/compiler-viz/
index.html.

7.1 Backend: Racket Compiler

The backend is written in Racket5, where source pro-
grams are compiled to target programs. Here, programs
are represented as s-expressions, where the tree struc-
ture of ASTs are encoded as lists of either other lists
or symbols. For instance, in (if (< a b) c d), the

5https://racket-lang.org/

https://se.cs.ubc.ca/compiler-viz/index.html
https://se.cs.ubc.ca/compiler-viz/index.html
https://racket-lang.org/

Figure 12: A mockup of an alternative overview visualization, showing the code added by each pass by highlighting in a darker
luminance.

expression itself and (< a b) are both lists, while if,
<, and a through d are symbols. Compiler passes take
source s-expressions and manipulate them to produce
target s-expressions.

We lift the a-normalize and select-instructions
passes from the 2019 Term 2 offering of CPSC 6. We
modify these passes so that a unique tag (specifically,
a generated symbol) is attached to every node of the
source s-expression. Then during each compiler pass, if
a target node is produced from some source node with
a unique tag, that target node is also tagged with the
same tag. Newly generated target nodes are left un-
tagged. If there is a subsequent pass, untagged nodes
are uniquely tagged first before the pass is applied. For
the previous example expression, the source s-expression
might be tagged as (with indenting for legibility):

((if . t1) ((< . t2) (a . t3)
(b . t4))

(c . t5)
(d . t6))

while the corresponding target s-expression after
a-normalize would be

(let ([p ((< . t2) (a . t3) (b . t4))])
((if . t1) p

(c . t5)
(d . t6)))

where let and p have been left untagged for now. The
inter-AST edges can then be recovered by connecting
the AST nodes between the two programs with the same
tag.

6https://www.students.cs.ubc.ca/~cs-411/2019w2/

After source programs have been tagged and com-
piled through all passes, we then re-encode the program
s-expressions into JSON representations for ease of ma-
nipulation in the frontend.

Finally, there is a lightweight Racket server, which
receives requests containing the source program to com-
pile. The program is parsed from a string into an
s-expression, tagged, compiled through two passes to
produce three program s-expressions in total, then re-
encoded as a JSON string, which is sent back as the
request response.

7.2 Frontend: Visualization

The frontend is written in TypeScript using axios7 to
perform requests and React8 for building the user inter-
face. The overview and the detailed view of the visual-
ization itself are both composed of a top and a bottom
layer.

The top layer displays the compiled programs using
pure React JSX components written from scratch that
represent each node. These elements are recursively in-
serted into the browser document following the struc-
ture of a program’s AST. With each element, an event
listener for the mouseover browser event was added
where, upon a cursor hovering over the element, other
elements in the document attached to expressions with
a matching tag would be passed to a bounding-box and
flow-drawing subsystem.

The bottom layer displays the bounding boxes and
flows between nodes with the same tag. These bound-
ing boxes and flows are also constructed from scratch

7https://github.com/axios/axios/
8https://reactjs.org/

https://www.students.cs.ubc.ca/~cs-411/2019w2/
https://github.com/axios/axios/
https://reactjs.org/

Figure 13: An early prototype of the overview using straight line marks to encode inter-AST links.

as SVG elements and inserted into the browser docu-
ment using jQuery9 for convenience. The process of con-
structing the flows themselves is designed after a jQuery
plugin that uses Bézier curves10.

Additional elements, such as the sidebar and code
editor, were implemented by importing the popular npm
packages react-ace11 and react-burger-menu12.

8 Results

This section begins with possible scenarios of use of
LastPass, and concludes with analysis on some informal
user studies conducted with former CPSC  students.

8.1 Use Cases

When a student first visits the site where LastPass is
hosted, they are presented with an editor where they
can input their desired program to visualize, as seen
in Figure 14. By default, a program with a top-level
function definition for computing a factorial and the
application of the factorial function on the number 5
is given.

One possible use case of LastPass is for students to
learn how a certain expression is compiled. For example,
one assignment in CPSC  involves compiling control
flow, which means students learn how to compile if ex-
pressions. A student is interested in understanding how
an if expression slowly transforms into two separate

9https://jquery.com/
10https://www.jqueryscript.net/other/

animated-lines-elements-bezier.html
11https://www.npmjs.com/package/react-ace/
12https://www.npmjs.com/package/react-burger-menu/

Figure 14: The program input area for LastPass with a default
example program.

blocks of assembly code with jumps, and making sure
to make note of particularly important passes. In this
case, a student may input a small program containing
an if expression. From the overview, they select passes
that include a lot of structural changes, and skip passes
that show relatively straight flows, such as a-normalize.
By selecting these passes in detail, and mousing over the
if expression in the source program, the student can di-
rectly pinpoint the result of compiling this expression.
They avoid getting lost in the large textual output pro-
gram that includes boilerplate for running assembly.

Another possible use case is compiler debugging. A
student may have implemented several passes, but finds
that the provided test suite fails on certain tests. They

https://jquery.com/
https://www.jqueryscript.net/other/animated-lines-elements-bezier.html
https://www.jqueryscript.net/other/animated-lines-elements-bezier.html
https://www.npmjs.com/package/react-ace/
https://www.npmjs.com/package/react-burger-menu/

input one of these failing test programs, and can check
the results of their implemented passes. By mousing
over expressions in the source program of the pass, they
can gain a sense of the correct transformation their im-
plementation should follow. However, our tool does not
let them directly compare against the incorrect output
of their pass, forcing them to switch between them and
do the comparison in their head. Allowing students to
provide their incorrect output for comparison could be
a future feature of LastPass.

8.2 End-User Study

We conducted an informal user study of three for-
mer CPSC  students to survey the perception of
LastPass by former members of the target demographic
of LastPass. We could not use current students of CPSC

, as the course was not being offered during the time
of this study.

Participants were provided with LastPass and a sam-
ple program while their screen was recorded. This was
paired with an exit interview probing their thoughts on
the system.

Participants recognized several advantages of
LastPass over the tools they had used when they were
enrolled in CPSC 411.

®
It would definitely make it easier to parse what

the reference implementation is doing, because
you had to do this in your head before.

One participant stated task T2.2 as one which could
be accomplished by students given this tool.

®
When I make this change here, I can see the ef-

fect it has on my output right away, as opposed
to spending ten minutes or more collecting text
documents [of programs] and running a diff.

Another echoed task T2.3, but in terms of creating
test cases.

®
It would be much easier to see which parts of

my test case are actually used and how they are
used in the language above.

Unfortunately, participants were less confident that
students would be able produce an informed estimate of
the distribution of effort across creating multiple passes
given only LastPass.

®
I feel like it could be helpful but it could also

be misleading. Like select-instructions, ob-
viously there’s a lot going on here [...] versus
a-normalize which I think is more conceptually
tricky.

Finally, users highlighted that the interface for inter-
acting with LastPass left room for improvement.

®
The output is kind of confusing, but after click-

ing random things it appears it’s showing me
different passes.

All three users failed to discover that a flow could be
pinned when clicked on, indicating that the user inter-
face could benefit from further iteration. One user sug-
gested that this may have occurred because the tools
that they were familiar with had different behaviours
upon performing a similar action.

®
I was so used to IntelliJ I was afraid I was

going to get swung away if I clicked any of these
[expressions].

9 Discussion and Future Work

We divide this section to individually discuss the
strengths and limitations of LastPass, and what we have
learned from creating this visualization. We include a
discussion of our proposed project schedule along with
the actual hours it took to complete, and then conclude
with future work.

9.1 Strengths

A significant strength of our tool is showing our stu-
dents the result of compilation of all subexpressions
in a larger program context. Even tiny programs are
greatly expanded by the reference compiler, as assem-
bly programs often require a great deal of boilerplate
instructions to run. The subexpressions of the origi-
nal source program quickly get lost in the large amount
of final instructions. Additionally, since the compiler
sequentializes data flow in the program, many expres-
sions are pulled away from their original context. This
transformation makes it even more difficult to pinpoint
certain compiled source expressions, as they can end up
far from their original source context.

9.2 Limitations

There are three key limitations in LastPass. The first
limitation is that the overview may not be a suitable
method for determining the complexity of passes. As
seen in Figure 11, the a-normalize pass does not look
as complex as select-instructions, as the latter has
many overlapping flows. The flows in the a-normalize
pass are mostly straight, with a few flows indicating that
some expressions have been pulled up out of their con-
text. However, this pass requires students to implement
it in a programming style called continuation-passing
style. Students may not have much experience with this
programming style, and may therefore find a-normalize
more difficult to implement than select-instructions.
We discovered that T1.3 might not be a feasible task af-
ter creating mockups of and implementing our overview.

Another key limitation is scale. We mentioned that
additional passes can scale horizontally in our overview,
and have ensured the frontend is implemented in a way
that enables this. However, thirty-three passes in a row
may not be very distinguishable in this horizontal for-
mat. Additionally, the detailed view does not restrict
the number of passes or programs that one can select.
This could lead to students selecting a lot of passes to

Figure 15: A detailed view of the select-instructions pass with seven flows pinned, causing a lot of occlusion.

see in detail, resulting in our visualization running out
of horizontal screen space to display all the programs.

A final key limitation is the number of pinned flows.
As seen in Figure 15, pinning many flows introduces
a lot of occlusion, despite the semi-transparent flows.
This makes it difficult to compare different subexpres-
sions, especially subexpressions that are children of
larger expressions with a pinned flow. One solution
could be to limit the number of displayed flows, but
it remains unclear what number to limit it to. Another
possible solution is to have inner flows to be an outline
of a curve rather than a filled curve; however, we have
not explored this option.

9.3 Future Work

There are a few features and ideas that we have in mind
but were unable to complete. These range from mi-
nor technical features to additional visualization com-
ponents that need more analysis and consideration.

Flow no-go. Currently in LastPass, if some source
AST node does not compile to any further target nodes,
a coloured box still appears around the source node, but
there are no flows coming out of it, and no indication
that this lack of flow is intentional and not an error. To
make this clear, there should be some visual represen-
tation of the fact that the flow does not go any further.

Branching flows. In a-normalize and
select-instructions, at most one target node is
produced from any source node. However, other passes
may produce two or more target nodes instead. There
are several visualization design considerations to keep
in mind when supporting this behaviour: Should there
simply be multiple flows from the same source node, or
should a single flow split into many and how? When
a target node is selected, should its flow siblings be
selected as well? How would we deal with the visual
clutter resulting from flows splitting into many over
several passes?

Sophisticated indentation. In our visualization, we
choose to place child AST nodes either on the same
line as their parent or directly below the parent with

indentation, but there are many ways a programmer
may choose to indent their code. In Racket-like lan-
guages such as those in CPSC , by convention, there
are four different styles depending on the type of ex-
pression. Displaying code in these four different styles
is mostly an aesthetic consideration, but would enhance
the user experience.

Grammar integration. One of our targeted tasks is
to enable students to compare how different kinds of
expressions are compiled (T2.1). When focusing on
a single expression, the student may wish to map its
structure back to the BNF grammar to better under-
stand how the substructures of a certain kind of expres-
sion is compiled. Additionally, the initial motivation
for LastPass states that the many sources of informa-
tion required frequent context switches, and we wished
to reduce this pain, but even with LastPass, they would
still have to open up the BNF grammar separately and
mentally perform the mapping.

It would be helpful if the visualization not only dis-
plays the BNF grammar for the relevant language as
an additional linked view, but also highlights instances
in the concrete program of a BNF grammar rule that
a student hovers over, so as to locate unfamiliar rules
in context and trace them back to their origin in the
source program.

Custom program comparison. Suppose a student has
implemented a compiler pass incorrectly, producing an
incorrect target program. They may wish to compare it
with the correct target program, which can be obtained
from LastPass. However, they will have to perform this
comparison on their own, outside of our tool. Being able
to visualize the differences between a compiled target
program and a custom user-provided program would be
helpful in the compiler pass implementation debugging
process.

9.4 Lessons Learned

What we learned from the development of LastPass co-
alesced as we wrote this final report, and reflected on
our process. In compiling responses from our end-user

study, we found plenty of valuable feedback that we
would have benefitted from receiving in a Formative
User Study. We learned that we should have front-
loaded prototype development to elicit as much feed-
back from potential users as early as possible so that
we could still have time to incorporate said feedback
into our final solution, instead of spending too much
time perfecting pen-and-paper prototypes.

We also learned that this early prototype develop-
ment period should have been performed before select-
ing which libraries to use. Selecting D3.js early in de-
velopment for its fancy example projects put blinders
on our development to alternatives, and overall slowed
our development process when we decided to remove the
D3.js dependency from the project.

10 Milestones and Schedule

Our proposed development schedule of LastPass is as
seen in Table 1. We include the name of the team
member that completed the proposed task as well as
the actual hours it took. “All” indicates that all team
members contributed relatively equally, a team mem-
ber name followed by “and rest” indicates all members
contributed, but that team member took the lead. We
made a mistake when providing the proposal, only allo-
cating 140 proposed hours instead of the required 240.
We leave the original 140 proposed hours as they were
in the proposal, but were pleased to have the 100-hour
buffer. Additionally, the “Learn D3.js” Milestone re-
mains an artifact of an early belief that D3.js13 would
be an integral part of the project before it was removed
later in development.

11 Conclusion

We have presented LastPass, an interactive visualiza-
tion tool for multi-pass compilers. This tool is intended
to be used in CPSC  to aid student’s understanding of
the compilation process overall, as well as understand-
ing the effects of particular passes. We achieve this by
showing students the transformations performed in each
compiler pass. In the overview, students are able to see
all possible passes with all the pass edges illustrated.
Students can then selectively choose passes to show in
detail, allowing them to see individual subexpression
changes on a pass-by-pass level. We believe LastPass is
a suitable tool for understanding how a compiler per-
forms its incremental transformations of an input pro-
gram.

13https://d3js.org/

References

[1] Almeida-Martinez, F. J., and Urquiza-
Fuentes, J. Syntax Trees Visualization in
Language Processing Courses. In 9th IEEE Intl.
Conf. Advanced Learning Technologies (2009),
pp. 597–601.

[2] Andrews, K., Henry, R. R., and Yamamoto,
W. K. Design and Implementation of the UW Il-
lustrated Compiler. In Proc. ACM SIGPLAN 1988
Conf. Programming Language Design and Imple-
mentation (1988), PLDI ’88, p. 105–114.

[3] Bolte, F., and Bruckner, S. Vis-a-Vis: Visual
Exploration of Visualization Source Code Evolution.
IEEE Transactions on Visualization and Computer
Graphics (2019), 1–1.

[4] Devkota, S., Aschwanden, P., Kunen, A., Leg-
endre, M., and Isaacs, K. E. CcNav: Under-
standing Compiler Optimizations in Binary Code.
IEEE Transactions on Visualization and Computer
Graphics (2020), 1–1.

[5] Gondow, K., Fukuyasu, N., and Arahori, Y.
MieruCompiler: Integrated Visualization Tool with
“Horizontal Slicing” for Educational Compilers. In
Proc. 41st ACM Technical Symp. Computer Science
Education (2010), SIGCSE ’10, p. 7–11.

[6] Krzywinski, M. Designing for Color Blind-
ness, 2020. http://mkweb.bcgsc.ca/colorblind/
palettes.mhtml.

[7] Telea, A., and Auber, D. Code Flows: Visual-
izing Structural Evolution of Source Code. In Proc.
10th Joint Eurographics / IEEE - VGTC Conf. Vi-
sualization (2008), EuroVis’08, p. 831–838.

[8] Zhao, W., Cai, B., Whalley, D., Bailey,
M. W., van Engelen, R., Yuan, X., Hiser,
J. D., Davidson, J. W., Gallivan, K., and
Jones, D. L. VISTA: A System for Interactive Code
Improvement. In Proc. joint conf. on Languages,
Compilers and Tools for Embedded Systems: Soft-
ware and Compilers for Embedded Systems (2002),
LCTES/SCOPES ’02, Association for Computing
Machinery, p. 155–164.

https://d3js.org/
http://mkweb.bcgsc.ca/colorblind/palettes.mhtml
http://mkweb.bcgsc.ca/colorblind/palettes.mhtml

Table 1: Project Schedule. “All” means all members contributed equally. “$FIRSTNAME and rest” indicates all members contributed,
but the member mentioned took the lead.

Milestone Description Proposed Hours Performed By Actual Hours

Pitch Prepare slides, record video 1 Braxton and rest 2

Proposal Refine ideas, write proposal 10 All 20

Learn D3.js Read documentation, experiment with D3.js 12 All 16

Scaffold Project Set up the repository, gather dependencies 4 Braxton 4

Build Prototype Hard coded minimal prototype 20 Jonathan and rest 24

Racket Compiler Instrument the reference compiler 16 Paulette 20

Data Transformation Write transformation from s-expression to JSON 5 Jonathan 6

Updates Refine abstractions, update writeup 5 All 8

Peer Project Review Prepare for project exchange 4 All 4

Build MVP Build LastPass 20 Braxton 45

Polish Viz Iterate on MVP 10 Braxton and rest 13

User Study Conduct End-User Study - Braxton 3

Final Presentation Record video, rehearse for Q&A 10 Paulette and rest 22

Final Report Finalize the paper 20 All 24

Total Hours 140 All 211

	Introduction
	Motivation

	Background
	Programs
	Compiler Passes

	Related Work
	Visualizations of Compiler Implementations
	Visualizations of Compiler Optimizations
	Visualizations of Transformations over Source Code

	Task Analysis
	Dividing the Work
	Compiler Exploration
	Compiler Debugging

	Data Abstractions
	Program Representation
	Compiler Representation
	Dataset and Summary

	Solution and Design
	Detailed View
	Overview
	LastPass

	Implementation
	Backend: Racket Compiler
	Frontend: Visualization

	Results
	Use Cases
	End-User Study

	Discussion and Future Work
	Strengths
	Limitations
	Future Work
	Lessons Learned

	Milestones and Schedule
	Conclusion

