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1 INTRODUCTION

NOTE:
Red Bold Text: Instructor’s notes.
Green text: Author’s Revisions.
Good! A bit more information on how and why you are visual-
izing the data and who the visualization is targeted for is neces-
sary in the introduction. It’s not so clear why there is a need for
visualization in that writeup at this point. Kinaxis is a supply
chain management company that models the product structures of its
customers using graphs. To schedule a product structure, one must
consider all of its constituent parts. In such a calculation, certain
parts may depend on others. For example, the assembly of a bicycle
depends on the assembly of a cassette, which itself depends on the
assembly of individual cassette-cogs. These one-way dependencies
can be calculated by maintaining that every dependant part relies on
the scheduling of its parent parts.

However, applying the same logic without additional considera-
tion to multi-way dependencies could cause deadlocks and conflict-
ing schedules. In a multi-way dependency, multiple parts rely on a
shared constraint. For example, a pair of different-sized cogs that get
assembled on the same production line. If these parts were scheduled
in isolation, the resulting production schedules could conflict with
one another. To address this, parts that share common constraints
are grouped into structures known as Calculation Families.

Inclusion in calculation families is a transitive operation that
can result in the merging of large families. For example, if two
calculation families contain parts that share common constraints,
then the two families will be merged into a single calculation family
(See Fig. 1). The scheduling algorithms used by Kinaxis to schedule
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Figure 1: Merging of Calculation Families. Since parts A and B
share constraint X , they must be in the same calculation family.
Similarly, Parts B and C share constraint Y , so they must be in the
same family. Therefore, Parts A, B, and C are grouped into the same
calculation family.

their customers’ product structures are parallelized across calculation
families. Therefore, the fewer families that a customer has in their
product structure(s), the slower the algorithms will be executed.
Furthermore, having fewer families usually means that each family
will be larger, further hindering parallel execution.

This project builds upon work completed in 2020 in collaboration
with Carleton University’s Computational Geometry Lab and Ki-

naxis with funding provided by the NSERC-Engage Alliance Grant.
In said work, we defined a graphical model of calculation families,
and automated the detection of underutilized constraints in calcula-
tion families using a recursive minimum-cut removal [16] algorithm.
The mincut removal algorithm can efficiently detect underutilized
constraints in calculation families and these results can be used by
Kinaxis project managers to optimize supply chain scheduling. How-
ever, before committing to the removal of underutilized constraints
from a calculation family, there would be an added advantage to the
visualization of the structure of the families. Since calculation fami-
lies may contain 1000s of nodes and 10000s of edges, developing
a simplified visual representation that summarizes the calculation
family graph and highlights the presence of underutilized constraints
would help facilitate the interaction of Kinaxis Project Managers
with these complex data structures.

We propose UCoD (The Underutilized Constraint Detector) - a
tool that will allow Kinaxis’ users to visualize, query, and search
the calculation families in their product structures. This graphical
representation of calculation families will take the form of an inter-
active, web-based, node link diagram that will display the high-level
structure of calculation families and the properties of underutilized
constraints. Given this information, the user may decide to remove
the highlighted constraints from the graph. The removal of these
constraints from the graph will split up calculation families substan-
tially, while still maintaining a valid and feasible scheduling plan.
As a result, the parallel scheduling of the (now smaller) families will
be faster.

2 RELATED WORK

there is a large and vast span of related work in visualiza-
tion that targets similar problems and proposes similar solu-
tions. After reading that subsection it’s not all obvious which
of the many approaches you mention might be relevant to your
project - it reads like a general overview of how to draw graphs,
rather than something targeted for your work. You might
need to focus more on large graphs. Some suggestions below:

• Link

• Visual Analysis of Large Graphs: State-of-the-Art and Fu-
ture Research Challenges. Von Landesberger et al.

• Abello et al. 2006: Ask-graphview: A large scale graph
visualization system

• Archambault et al. 2007 Grouseflocks: Steerable explo-
ration of graph hierarchy space

• Archambault et al. 2008 Grouse: Feature-based, steerable
graph hierarchy exploration

• Archambault et al. 2009 Tuggraph: Path-preserving hier-
archies for browsing proximity and paths in graphs

• Gansner et al. 2005: Topological fisheye views for visualiz-
ing large graphs

NOTE:
The following Related Work Section will undergo a significant
rewrite to address our review of the papers seen and comments
made above.

https://www.kinaxis.com/en
https://cglab.ca/
https://www.nserc-crsng.gc.ca/Professors-Professeurs/RPP-PP/Engage-engagement_eng.asp
https://hal.inria.fr/hal-00712779/document


2.1 Graph Visualization
Traditionally, graphs are visualized using Node-Link diagrams or
Matrix Views. Node-link diagrams use nodes as point markers
and connecting edges as line markers. Data attributes are encoded
using colour, size, and shape channels for both nodes and edges
[12]. Node-Link and its variants (Triangular vertical, spline radial,
rectangular horizontal, bubble tree [15]) are often used to display
graphs. Several different dimensional layouts have been explored.

Figure 2: A visualization example of a Node-Link diagram mapped
to a matrix [2].

Chord Diagrams lay the nodes on the circumference of the circle.
Arc diagrams lay the nodes along one dimension [13].

In this work, we’ll represent node-link diagrams in 2D space.
These diagrams work well with small, sparse networks, but are
poorly readable with large and highly connected graphs. Plotting
large networks becomes difficult when nodes are placed in a con-
strained 2D space. A reoccurring problem that is observed when
plotting large networks is the production of “hairballs” [15] - de-
scribed as a visual clutter of occluded nodes and edges in large,
dense graphs. To address this, node placement could be done using
force-directed approaches [6, 8]. By assigning repelling forces to
edges and nodes based on their relative position, these algorithms
attempt to maintain that all edges are of more or less equal length
and that there are as few crossing edges as possible.

Forced layout algorithms have difficulty converging to a place-
ment solution in a reasonable run-time. Also, because the placement
of nodes is not deterministic, identical layout reproduction can be
challenging. Force-directed placement algorithms search in a way
that can get stuck in local minima that may not be the optimal solu-
tion to the placement problem. To address these issues, multilevel
force-directed placement algorithms have been developed [6]. These
algorithms augment the original network with a derived cluster hi-
erarchy to form a compound network. The cluster hierarchy is
computed by coarsening the original network into successively sim-
pler networks. This approach is better at avoiding local minima and
can provide reproducible general placements. Finally, the run-time
of multilevel force-directed placements is also improved because
individual clusters are redefined independently as smaller networks.

The adjacency matrix view (AMV) is another way to visualize
graphs. The rows and columns of this matrix are indexed by the
nodes in the graph. If an edge ei j exists between nodes vi,v j ∈
G(V,E) (where G(V,E) is the graph, and V,E are the sets of nodes
and edges in G), then the i, jth entry in the AMV will be filled. These
entries can be filled with a boolean, an edge weight, or a colour to
encode an edge attribute [13]. Such an implementation can achieve
high information density, up to a limit of one thousand nodes and
one million edges. An aggregated multilevel matrix view could
handle up to ten billion edges [15]. While an NL diagram requires
the entirety of the graph to be shown, only half of the AMV needs

to be shown for an undirected graph, because a link from node vi
to node v j implies a link from v j to vi [15]. Matrix views don’t
suffer from non-deterministic placement, because the area and the
dimensions of the matrix are fixed. One major weakness of matrix
views is unfamiliarity: most users can easily interpret NL views but
not matrix views [15].

2.2 Supply Chain Management
Citation for beginning claim of 2.2? How and why does visu-

alization help this? Good start in 2.2. Keep in mind that even
if there are related problems in supply chain management, you
should also consider whether there are related solutions in other
fields that could be applied. Note it’s ”force-directed layout” not
”forced layout”
Visualizing supply chains helps the user to:

1. Simplify the supply chain network (for example, by using node
and edge contraction [9]),

2. Identify transportation bottlenecks or geographic concentra-
tions [1],

3. Find alternate supply chain structures [1].

Traditionally, supply chains are represented as directed graphs
or “netchains” [11]. In situations where heterogeneous data-sets
are available, visual analysis reduces the user’s cognitive load and
expedites exploration by projecting emergent relationships between
entities [3]. However, representing supply chains using visual inter-
faces is still in a nascent stage. We will explore relevant literature
related to understanding and communicating the underlying structure
of supply chains.

Supply chains have been an area of interest for a long time for the
visualization community. An example of such work is representing
supply chain interactions within a causal loop diagram [14]. An-
other example developed a framework for visually representing the
geographical attributes of a supply chain using a case study from
the transport container industry [7]. Furthermore, there has been a
push to include geo-spatial data (GIS), in order to visualize supply
chains across multiple dimensions [4] In this paper, the supply chain
data-set does not have GIS data available, so this option will not
be explored. On another note, Kassem et al. [10] developed a visu-
alization scheme for mapping relevant information to the progress
of building construction. In this project, we focus on developing a
visualization scheme that would aid the user to identify underutilized
constraints.

3 DATASET AND TASKS

3.1 Dataset and Data Abstraction
Dataset, it’s not clear - do you already have this dataset? Do

you have to obtain it or gain access to it in some way? Is there
no set of nodes? Or is that included in the edges tables? Ab-
straction of candidate constraints for removal is a useful one to
help influence what you will draw user attention to in your vi-
sualization tool. Data and task abstraction is partway between
domain-specific and domain-agnostic — Task abstraction is in
a slightly better domain-agnostic place than data abstraction.
I recommend having a section where you describe the data in
domain-specific terms, then go deeper and abstract the data
into domain-agnostic language. Sec 3.1 is a little hard to fol-
low. Also, for making a point like ”Approximately 99% of the
families contain less than 5000 parts (Fig. 3) and less than 300
constraints (Fig. 4)” you would be better served by something
more like a cumulative distribution plot where that could be
read directly off the chart.

Kinaxis has provided the authors with an anonymized customer’s
dataset. Utilization of the Family Separation Dataset was condi-
tioned upon compliance to a Non-Disclosure Agreement between
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Figure 3: Figure will be revised to a Cumu-
lative Distribution Plot

Figure 4: Figure will be revised to a Cumu-
lative Distribution Plot

Figure 5: Figure will be revised to a Cumu-
lative Distribution Plot

Kinaxis and the authors. Kinaxis’ Family Separation Dataset
contains 199 807 parts, 8 251 constraints, and 2 989 families. The
dataset consists of three tables:

1. Edges - Part to Constraint: defines the edges between
Parts and Constraints. Equivalently, which Parts depend on
which Constraints. The Part and Constraint nodes are implied
by this table.

2. Edges - Part to Family: defines which Parts belong to
which Calculation Families. A key-value mapping between
Families and their constituent parts.

3. Constraint Utilization: contains constraint utilization
observations over time.

Every constraint utilization observation is attributed with the follow-
ing features:

• The constraint capacity, p≥ 0: A scalar value that indicates
the constraint’s total capacity.

• The constraint load, l ≥ 0: A scalar value that indicates how
much of the constraint’s capacity was utilized (in aggregate)
by all of its dependant parts.

Using these attributes, the following metrics are derived:

• The constraint utilization, u := l/p.
If u≈ 0 then that constraint is underutilized.
If u > 1, then that constraint is overutilized.

• Due to the dynamic nature of constraint load and capacity,
an important metric to observe is the maximum constraint
utilization. This metric is defined to be the largest constraint
utilization observed over the entirety of the dataset.

In a calculation family graph F , there exist two types of node
sets:

• P - the set of Part nodes in the calculation family.

• C - the set of Constraint nodes in the calculation family.

Every part is connected to at least one constraint via an edge. This
edge is used to model the dependency that exists between part pi and
constraint c j. The weight of the edge between pi and c j is defined
to be the Maximum Constraint Utilization for constraint c j . If the
maximum constraint utilization for a constraint ci is below some
predefined constant 0 < ε < 1, constraint ci is said to be consistently
underutilized.

Modelling the edge weights in a family graph F as the maximum
constraint utilization (over all entries in the dataset) was proposed

by Kinaxis’ algorithm developers. The justification for this choice
was the fact that if a constraint is consistently well below its
capacity, “then it may make sense to simply remove that constraint.
Since it does not bottleneck production, it is not adding very much
value” [5].
NOTE:
what is the proper way to cite a personal correspondence?

3.2 Part Contraction
Some edges and parts in the graphical representation of a family may
be redundant and could be contracted to reduce family size. There
may exist parts that are similar in the sense that they are connected
to the same set of constraints. These “identical” part nodes can be
contracted to form a single meta-node (See Fig. 6). The weight of
the edge between the new meta-node and the constraint ci remains
uci (since it was equal across all parts in P).

(a) A calculation
family

(b) A contracted
calculation family

Figure 6: Part Contraction. Red nodes are underutilized constraints.
Green nodes are fully utilized constraints. Yellow nodes are parts.

3.3 Task Abstraction
The goal of this work is to propose the removal of constraint nodes
that would both:

1. Significantly reduce the family size, and

2. Continue to represent a feasible and reasonable plan.
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The set of candidate constraints for removal will be identified using
the recursive minimum-cut removal algorithm developed in our
previous work. The candidate constraints are constraint nodes in
a family graph whose removal from the graph will result in two
disconnected subgraphs of roughly equal size. These candidates
will be displayed to the user, who may then decide to remove the
proposed constraints from the family graph. If the family size is
substantially reduced, then the scheduling of the partitioned family
will be optimized. The new scheduling calculation induced by the
split-up family will be monitored by Kinaxis’ users to verify that it
continues to represent a valid plan.
We intend UCoD to provide the following functionality:

1. At the highest level, the user will derive:

• Constraint utilization metrics,
• Aggregate Constraint utilization metrics, and
• the Graph topology of Calculation Families.

2. Since the target (underutilized constraints) is known, but its
existence and location in a family graph is unknown, the user
will locate underutilized constraints in the graph.

3. The user will select constraints that are connected to multi-
ple (“identical”) parts, and contract all parts associated with
said constraints. This aggregation will simplify the visual
representation.

4. The user will manipulate the value of ε ∈ (0,1) (the constant
defining constraint underutilization) and this variation will be
dynamically represented in the graph. Different values of ε

produce different family separations. Allowing the user to
tweak this parameter could result in the proposal of candidate
constraints for removal that would not have been possible with
a hard-coded ε value.

4 SOLUTION: YOUR PROPOSED INFOVIS SOLUTION.
Sketches or potential prototypes will help a lot here. I suspect

interaction will play a huge role in the project, so the faster
you can prototype that, the better shape your project will be
in. While not necessary for the updates, for the final report,
you will have to note more details on the implementation: what
was difficult, potential roadblocks, and a description of why you
chose the tools that you did. Scenario of use - eventually will
want to split apart into a different section, but very good start
as a driving scenario.

4.1 Visual Encoding and Idiom
We display Calculation Families as Node Link Diagrams. We ac-
company this display with an adjacency matrix view. Point Marks
will signify nodes and line marks will signify edges between parts
and constraints. The channels we will use to distinguish between the
type of nodes in the graphs and the constraint utilization magnitude
are not finalized.
NOTE:
Still a work-in-progress. We continue to experiment with the differ-
ent marks and channels we will use to represent:

• Part nodes

• Constraint Utilization magnitude

• Candidate Constraints for Removal

4.2 Implementation
1. Data ingestion and preprocessing: pandas

2. Graph construction and layout: igraph, graphviz

3. Graph rendering, visualization: sigmajs

4.3 Scenario of Use
Andrea is a Solution Architect at Kinaxis. She has been tasked
with the integration of a new client’s supply chain into Kinaxis’
concurrent planning platform. Given the constraint utilization history
and projections in the customer’s product structure, she constructs
a Calculation Family dataset. However, on the first few iterations
of the scheduling calculations, she notes that the calculations take
too long. Andrea suspects that some of the calculation families in
the dataset might be too large. She wonders whether the client has
erroneously included underutilized constraints in certain families,
and whether removing said constraints would speed up the parallel
scheduling calculations. To find out whether this is true:

1. Andrea uploads the new client’s Calculation Family dataset to
UCoD.

2. The recursive minimum-cut removal algorithm returns that
Family f1 contains an underutilized constraint whose removal
from the graph will split up the family substantially.

3. Andrea selects this family in UCoD to visualize it (See Fig. 7).

4. Andrea is unable to view the occluded and unordered clusters
of constraints and parts in the family, so she decides to apply
the sfdp layout to the graph.

5. Andrea further simplifies the graphical representation by click-
ing Contract All to contract all underutilized constraints in
Family f1. (See Fig. 8).

6. Working with this simplified graph, Andrea can click on Con-
straint c1 to remove it from the graph. She sees that this
removal produces two disconnected components. Also, be-
fore removing Constraint c1, Andrea queries the attributes
of Constraint c1 and sees that the last constraint utilization
observation associated with this constraint was 6 months ago.

7. Andrea’s findings allow her to conclude that Constraint c1 can
be safely removed from Family f1, and updates the scheduling
calculation that includes this family.

Figure 7: Current User Interface of UCoD. This endpoint allows the
user to select which family they would like to inspect.

5 MILESTONES

See Table 1. Seems like a lot of the work is on Alex as an owner,
do you need divvy up the work in a more reasonable way? You
don’t have any time estimates for things like writeup and pre-
sentation preparation, do include those as well so that you have
a complete picture of time required. You’ve only accounted for
<60 hours between two people, so there’s definitely some miss-
ing terrain.

• Red milestones are mandatory for project completion.

• Blue milestones would enhance UCoD’s aesthetic, functional-
ity, and/or interactivity.

Style - a few cites sloppy [2, 4, 10]

4
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Figure 8: Current implementation of Graph Contraction in UCoD
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Name Description Owner Estimate Due Date Update

Interactive Constraint Con-
traction

1. The user is able to select a con-
straint and click it to contract all of
its dependent parts.

2. The user can contract all under-
utilized constraints by clicking
Contract All

Alex 16 hours Nov. 15 Complete

Varying Epsilon Represented
in Graph

1. A slider can be manipulated to
vary the amount of 0 ≤ ε ≤ 1.
Varying this amount is dynami-
cally rendered in the browser.

Alex 16 hours Nov. 22 In progress

Adjacency Matrix View
1. The node-link view of a calcula-

tion family is accompanied by the
adjacency matrix view.

Nikola 16 hours Nov. 22 In progress

User interface
1. The families containing candidate

constraints are can be chosen
(clicked) by the user.

Alex 16 hours Nov. 15 Complete

Proposal Update 1. Revise project report based on
notes Alex, Nikola 4 hours Nov. 18 In progress

Implement the visual encod-
ing of Candidate Constraints
for Removal

1. Upon loading a family graph in
UCoD, the user’s attention should
be immediately directed to the can-
didate constraint for removal.

2. Potentially, redundant encodings
could be used to signify the im-
portance of this data point. For
example, a combination of shape,
colour, size, and/or movement (jit-
ter).

Alex, Nikola 10 hours Dec. 1 In progress

Force directed placement of
contracted families

1. Maintain two versions for each
family to be displayed

2. This will allow:

• users to revert between con-
tracted and uncontracted ver-
sions of families.

• visualize a force directed
placement of contracted
families

Alex, Nikola 10 hours Dec. 1 In progress

Presentation Preparation
1. Prepare Presentation slides

2. Rehearse Live Presentation
Alex, Nikola 8 hours Dec. 10 Not started

Final Report
1. Complete literature review (Rec-

ommended papers)

2. Rehearse Live Presentation

Alex, Nikola 16 hours Dec. 14 Not started

Table 1: Project Milestones
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