
CPSC 547 Project Proposal
UCoD - Simplifying Supply Chain Structures in the Browser

Alex Trostanovsky
atrostan@cs.ubc.ca

Nikola Cucuk
nca3@sfu.ca

1 INTRODUCTION

Kinaxis is a supply chain management company that models the
product structures of its customers using graphs. To schedule a
product structure, one must consider all of its constituent parts. In
such a calculation, certain parts may depend on others. For example,
the assembly of a bicycle depends on the assembly of a cassette,
which itself depends on the assembly of individual cassette-cogs.
These one-way dependencies can be calculated by maintaining that
every dependant part relies on the scheduling of its parent parts.

However, applying the same logic without additional considera-
tion to multi-way dependencies could cause deadlocks and conflict-
ing schedules. In a multi-way dependency, multiple parts rely on a
shared constraint. For example, a pair of different-sized cogs that get
assembled on the same production line. If these parts were scheduled
in isolation, the resulting production schedules could conflict with
one another. To address this, parts that share common constraints
are grouped into structures known as Calculation Families.

Inclusion in calculation families is a transitive operation that
can result in the merging of large families. For example, if two
calculation families contain parts that share common constraints,
then the two families will be merged into a single calculation family
(See Fig. 1). The scheduling algorithms used by Kinaxis to schedule

Part
A

Part
B

Part
C

Const.
X

Const.
Y

Figure 1: Merging of Calculation Families. Since parts A and B
share constraint X , they must be in the same calculation family.
Similarly, Parts B and C share constraint Y , so they must be in the
same family. Therefore, Parts A, B, and C are grouped into the same
calculation family.

their customers’ product structures are parallelized across calculation
families. Therefore, the fewer families that a customer has in their
product structure(s), the slower the algorithms will be executed.
Furthermore, having fewer families usually means that each family
will be larger, further hindering parallel execution.

We propose UCoD (The Underutilized Constraint Detector) - a
tool that will allow users to visualize, query, and search the cal-
culation families in their product structures. This graphical rep-
resentation of calculation families will facilitate the detection of
underutilized constraints. The removal of these constraints from
the graph will split up calculation families substantially, while still
maintaining a valid and feasible scheduling plan. As a result, the
parallel scheduling of the (now smaller) families will be faster.

This project builds upon work completed in 2020 in collabora-
tion with Carleton University’s Computational Geometry Lab and
Kinaxis with funding provided by the NSERC-Engage Alliance
Grant. In said work, we defined a graphical model of calculation
families, and automated the detection of underutilized constraints
in calculation families using a recursive minimum-cut removal [14]
algorithm.

2 RELATED WORK

2.1 Graph Visualization
Traditionally, graphs are visualized using Node-Link diagrams or
Matrix Views. Node-link diagrams use nodes as point markers
and connecting edges as line markers. Data attributes are encoded
using colour, size, and shape channels for both nodes and edges
[10]. Node-Link and its variants (Triangular vertical, spline radial,
rectangular horizontal, bubble tree [13]) are often used to display
graphs. Several different dimensional layouts have been explored.

Figure 2: A visualization example of a Node-Link diagram mapped
to a matrix [1].

Chord Diagrams lay the nodes on the circumference of the circle.
Arc diagrams lay the nodes along one dimension [11].

In this work, we’ll represent node-link diagrams in 2D space.
These diagrams work well with small, sparse networks, but are
poorly readable with large and highly connected graphs. Plotting
large networks becomes difficult when nodes are placed in a con-
strained 2D space. A reoccurring problem that is observed when
plotting large networks is the production of “hairballs” [13] - de-
scribed as a visual clutter of occluded nodes and edges in large,
dense graphs. To address this, node placement could be done using
force-directed approaches [5, 7]. By assigning repelling forces to
edges and nodes based on their relative position, these algorithms
attempt to maintain that all edges are of more or less equal length
and that there are as few crossing edges as possible.

Forced layout algorithms have difficulty converging to a place-
ment solution in a reasonable run-time. Also, because the placement
of nodes is not deterministic, identical layout reproduction can be
challenging. Force-directed placement algorithms search in a way
that can get stuck in local minima that may not be the optimal solu-
tion to the placement problem. To address these issues, multilevel

https://www.kinaxis.com/en
https://cglab.ca/
https://www.nserc-crsng.gc.ca/Professors-Professeurs/RPP-PP/Engage-engagement_eng.asp
https://www.nserc-crsng.gc.ca/Professors-Professeurs/RPP-PP/Engage-engagement_eng.asp


force-directed placement algorithms have been developed [5]. These
algorithms augment the original network with a derived cluster hi-
erarchy to form a compound network. The cluster hierarchy is
computed by coarsening the original network into successively sim-
pler networks. This approach is better at avoiding local minima and
can provide reproducible general placements. Finally, the run-time
of multilevel force-directed placements is also improved because
individual clusters are redefined independently as smaller networks.

The adjacency matrix view (AMV) is another way to visualize
graphs. The rows and columns of this matrix are indexed by the
nodes in the graph. If an edge ei j exists between nodes vi,v j ∈
G(V,E) (where G(V,E) is the graph, and V,E are the sets of nodes
and edges in G), then the i, jth entry in the AMV will be filled. These
entries can be filled with a boolean, an edge weight, or a colour to
encode an edge attribute [11]. Such an implementation can achieve
high information density, up to a limit of one thousand nodes and
one million edges. An aggregated multilevel matrix view could
handle up to ten billion edges [13]. While an NL diagram requires
the entirety of the graph to be shown, only half of the AMV needs
to be shown for an undirected graph, because a link from node vi
to node v j implies a link from v j to vi [13]. Matrix views don’t
suffer from non-deterministic placement, because the area and the
dimensions of the matrix are fixed. One major weakness of matrix
views is unfamiliarity: most users can easily interpret NL views but
not matrix views [13].

2.2 Supply Chain Management
Visualizing supply chains helps the user to:

1. Simplify the supply chain network,

2. Identify transportation bottlenecks or geographic concentra-
tions, and

3. Automatically find alternate supply chain structures.

Traditionally, supply chains are represented as directed graphs or
“netchains” [9]. In situations where heterogeneous data-sets are avail-
able, visual analysis reduces the user’s cognitive load and expedites
exploration by projecting emergent relationships between entities
[2]. However, representing supply chains using visual interfaces is
still in a nascent stage. We explore relevant literature related to un-
derstanding and communicating the underlying structure of supply
chains.

Minegishi and Thiel [12] used causal loop diagrams to display
supply chain interactions. Greer et al. [3] include geo-spatial data
(Geographic Information System mapping - GIS) to visualize supply
chains using their geographical coordinates. Hu et al. [6] developed
a framework for visually representing geographical attributes of a
supply chain using a case study from the transport container industry.
Kassem et al. [8] developed a visualization scheme for mapping
information relevant to the progress of building construction.

3 DATASET AND TASKS

3.1 Dataset
Kinaxis’ Family Separation Dataset contains 199 807 parts, 8 251
constraints, and 2 989 families. The dataset consists of three tables:

1. Edges - Part to Constraint. This table maps Parts to
Constraints.

2. Edges - Part to Family. This table maps Parts to Calcu-
lation Families.

3. Constraint Utilization.

Every constraint utilization observation is attributed with the follow-
ing features:

• The constraint capacity, p≥ 0: A scalar value that indicates
the constraint’s total capacity.

• The constraint load, l ≥ 0: A scalar value that indicates how
much of the constraint’s capacity was utilized (in aggregate)
by all of its dependant parts.

• The constraint bucket: the date of the capacity and load obser-
vations.

Constraint Load (l) Capacity (p) l/p Bucket

c1 10 20 0.5 01/01/2020
c2 0.1 20 0.005 01/01/2020
c1 11 20 0.55 02/01/2020
c2 21 5 4.2 02/01/2020

Table 1: Constraint Metrics Observations Example. c1 is under-
utilized in both buckets. Since the load on c2 is increased and its
capacity is decreased on bucket 02/01/2020, it is overutilized during
that bucket. Note that for this set of observations maxuc1 = 0.55,
maxuc2 = 4.2.

Using these attributes, the following metrics are derived:

• The constraint utilization, u := l/p.
If u≈ 0 then that constraint is underutilized.
If u > 1, then that constraint is overutilized.

• Due to the dynamic nature of constraint load and capacity,
an important metric to observe is the maximum constraint
utilization. This metric is defined to be the largest constraint
utilization observed over a sequence of bucket observations
(See Table 1).

Figures 3, 4, and 5 show the distributions of Part, Constraint,
and Underutilized Constraint counts across families. Approximately
99% of the families contain less than 5000 parts (Fig. 3) and less
than 300 constraints (Fig. 4).

3.2 Data Abstraction - Modelling Calculation Families
as Graphs

In a calculation family graph F , there exist two types of node sets:

• P - the set of Part nodes in the calculation family.

• C - the set of Constraint nodes in the calculation family.

Every part is connected to at least one constraint via an edge. This
edge is used to model the dependency that exists between part pi and
constraint c j. The weight of the edge between pi and c j is defined
to be the Maximum Constraint Utilization for constraint c j . If the
maximum constraint utilization for a constraint ci is below some
predefined constant 0 < ε < 1, constraint ci is said to be consistently
underutilized.

Modelling the edge weights in a family graph F as the maximum
constraint utilization (over all entries in the dataset) was proposed
by Kinaxis’ algorithm developers. The justification for this choice
was the fact that if a constraint is consistently well below its capacity,
“then it may make sense to simply remove that constraint. Since it
does not bottleneck production, it is not adding very much value”
[4].
The goal of this work is to propose the removal of constraint nodes
that would both:

1. Significantly reduce the family size, and

2



Figure 3: Distribution of Part Counts per
Family

Figure 4: Distribution of Constraint Counts
per Family

Figure 5: Proportion of Underutilized Con-
straints per Family

2. Continue to represent a feasible and reasonable plan.

The set of candidate constraints for removal will be identified using
the recursive minimum-cut removal algorithm developed in our
previous work. These candidates will be displayed to the user,
who may then decide to remove the proposed constraints from
the family graph. If the family size is substantially reduced, then
the scheduling of the partitioned family will be optimized. The
new scheduling calculation induced by the split-up family will be
monitored by Kinaxis’ users to verify that it continues to represent a
valid plan.

3.3 Part Contraction
Some edges and parts in the graphical representation of a family may
be redundant and could be contracted to reduce family size. There
may exist parts that are similar in the sense that they are connected
to the same set of constraints. These “identical” part nodes can be
contracted to form a single meta-node (See Fig. 6). The weight of
the edge between the new meta-node and the constraint ci remains
uci (since it was equal across all parts in P).

(a) A calculation
family

(b) A contracted
calculation family

Figure 6: Part Contraction. Red nodes are underutilized constraints.
Green nodes are fully utilized constraints. Yellow nodes are parts.

3.4 Task Abstraction
We intend UCoD to provide the following functionality:

1. At the highest level, the user will derive:

• Constraint utilization metrics,

• Aggregate Constraint utilization metrics (max, mean,
with a focus on the possibility of outlier observations in
constraint utilization), and

• the Graph topology of Calculation Families.

2. Since the target (underutilized constraints) is known, but its
existence and location in a family graph is unknown, the user
will locate underutilized constraints in the graph.

3. The user will select constraints that are connected to multi-
ple (“identical”) parts, and contract all parts associated with
said constraints. This aggregation will simplify the visual
representation.

4. The user will manipulate the value of ε ∈ (0,1) (the constant
defining constraint underutilization) and this variation will be
dynamically represented in the graph. Different values of ε

produce different family separations. Allowing the user to
tweak this parameter could result in the proposal of candidate
constraints for removal that would not have been possible with
a hard-coded ε value.

4 SOLUTION: YOUR PROPOSED INFOVIS SOLUTION.
4.1 Visual Encoding and Idiom
We display Calculation Families as Node Link Diagrams. We ac-
company this display with an adjacency matrix view. Point Marks
will signify nodes and line marks will signify edges between parts
and constraints. The channels we will use to distinguish between the
type of nodes in the graphs and the constraint utilization magnitude
are not finalized.

4.2 Implementation
1. Data ingestion and preprocessing: pandas

2. Graph construction and layout: igraph, graphviz

3. Graph rendering, visualization: sigmajs

4.3 Scenario of Use
Andrea is a Solution Architect at Kinaxis. She has been tasked
with the integration of a new client’s supply chain into Kinaxis’
concurrent planning platform. Given the constraint utilization history
and projections in the customer’s product structure, she constructs
a Calculation Family dataset. However, on the first few iterations
of the scheduling calculations, she notes that the calculations take
too long. Andrea suspects that some of the calculation families in
the dataset might be too large. She wonders whether the client has
erroneously included underutilized constraints in certain families,

3

https://pandas.pydata.org/pandas-docs/stable/index.html
https://igraph.org/python/doc/igraph-module.html
https://graphviz.org/documentation/
http://sigmajs.org/


and whether removing said constraints would speed up the parallel
scheduling calculations. To find out whether this is true:

1. Andrea uploads the new client’s Calculation Family dataset to
UCoD.

2. The recursive minimum-cut removal algorithm returns that
Family f1 contains an underutilized constraint whose removal
from the graph will split up the family substantially.

3. Andrea selects this family in UCoD to visualize it.

4. Andrea is unable to view the occluded and unordered clusters
of constraints and parts in the family, so she decides to apply
the sfdp layout to the graph.

5. Andrea further simplifies the graphical representation by click-
ing Contract All to contract all underutilized constraints in
Family f1. (See Fig. 7).

6. Working with this simplified graph, Andrea can click on Con-
straint c1 (See Fig. 10) to remove it from the graph. She
sees that this removal produces two disconnected components.
Also, before removing Constraint c1, Andrea queries the at-
tributes of Constraint c1 and sees that the last constraint utiliza-
tion observation associated with this constraint was 6 months
ago.

7. Andrea’s findings allow her to conclude that Constraint c1 can
be safely removed from Family f1, and updates the scheduling
calculation that includes this family.

5 MILESTONES

• Red milestones are mandatory for project completion.

• Blue milestones would enhance UCoD’s aesthetic, functional-
ity, and/or interactivity.

1. Interactive Constraint Contraction.
Description:

(a) The user is able to select a constraint and click it to
contract all of its dependent parts.

(b) The user can contract all underutilized constraints by
clicking Contract All

Owner: Alex.
Estimate: 8 hours
Due Date: Nov. 1

2. Varying Epsilon Represented in Graph.
Description:

(a) A slider can be manipulated to vary the amount of 0≤
ε ≤ 1. Varying this amount is dynamically rendered in
the browser.

Owner: Alex.
Estimate: 16 hours
Due Date: Nov. 15

3. Adjacency Matrix View.
Description: The node-link view of a calculation family is
accompanied by the adjacency matrix view.
Owner: Nikola.
Estimate: 16 hours
Due Date: Nov. 15

4. Data/Graph Input Handler.
Description:

(a) The user is able to upload a constraint utilization dataset.

(b) The recursive minimum cut removal algorithm computes
candidate constraints for removal.

(c) The families containing those constraints are displayed
to the user.

Owner: Alex.
Estimate: 4 hours
Due Date: Nov. 15
Contingent on: 1, 2, 3

5. Animate Yifan Hu’s sfdp layout.
Description:

(a) Apply the sfdp layout to a given calculation family.

Owner: Alex.
Estimate: 4 hours
Due Date: Dec. 1

6. Develop Extensible API utilizing graphviz’ drawing li-
brary.
Description:

(a) Allow the user to select from a variety of layout calcula-
tions (implemented in the graphviz library)

Owner: Alex.
Estimate: 8 hours
Due Date: Dec. 10
Contingent on: 5

REFERENCES

[1] Chunlei Chang, Benjamin Bach, Tim Dwyer, and Kim Marriott.
Evaluating perceptually complementary views for network
exploration tasks. In Proceedings of the 2017 CHI conference
on human factors in computing systems, pages 1397–1407,
2017.

[2] Tera Marie Green, William Ribarsky, and Brian Fisher. Visual
analytics for complex concepts using a human cognition model.
In 2008 IEEE Symposium on Visual Analytics Science and
Technology, pages 91–98. IEEE, 2008.

[3] Jeff Greer et al. Gis: The missing tool for supply-chain design.
Foresight: The International Journal of Applied Forecasting,
(28):44–49, 2013.

[4] John Howat. Personal Communication.

[5] Yifan Hu. Efficient, high-quality force-directed graph drawing.
Mathematica Journal, 10(1):37–71, 2005.

[6] Zhi-Hua Hu, Bin Yang, You-Fang Huang, and Yan-Ping Meng.
Visualization framework for container supply chain by infor-
mation acquisition and presentation technologies. J. Software,
5(11):1236–1242, 2010.

[7] Mathieu Jacomy, Tommaso Venturini, Sebastien Heymann,
and Mathieu Bastian. Forceatlas2, a continuous graph layout
algorithm for handy network visualization designed for the
gephi software. PloS one, 9(6):e98679, 2014.

[8] Mohamad Kassem, Nashwan N Dawood, Claudio Benghi,
Mohsin Siddiqui, and Donald Mitchell. Coordinaton and vi-
sualization of distributed schedules in the construction supply
chain: A potential solution. In 10th International Conference
on Construction Applications of Virtual Reality, pages 77–86.
CONVR2010 Organizing Committee, 2010.

4

https://graphviz.org/pdf/dot.1.pdf
https://graphviz.org/pdf/dot.1.pdf


[9] Sergio Lazzarini, Fabio Chaddad, and Michael Cook. Integrat-
ing supply chain and network analyses: the study of netchains.
Journal on chain and network science, 1(1):7–22, 2001.

[10] Vaden Masrani. Sapvis: An interactive system explorer.

[11] Michael J McGuffin. Simple algorithms for network visual-
ization: A tutorial. Tsinghua Science and Technology, 17(4):
383–398, 2012.

[12] Shotaro Minegishi and Daniel Thiel. System dynamics model-
ing and simulation of a particular food supply chain. Simula-
tion practice and theory, 8(5):321–339, 2000.

[13] Tamara Munzner. Visualization analysis and design. CRC
press, 2014.

[14] Mechthild Stoer and Frank Wagner. A simple min-cut algo-
rithm. Journal of the ACM (JACM), 44(4):585–591, 1997.

5



APPENDIX A SCENARIO ILLUSTRATIONS

Figure 7: Graph Contraction

Figure 8: Variation of epsilon and its effect on the graph

Figure 9: A simple calculation family accompanied by the adjacency
matrix view. (Visual encoding of matrix cells and column and row
headers are not finalized).

Figure 10: Removal of an underutilized constraint from the graph.

Figure 11: Contraction of a single underutilized constraint in the
graph.

6



APPENDIX B PLANNING ROADMAP

Figure 12: A visualization of the project’s timeline.

7


	Introduction
	Related Work
	Graph Visualization
	Supply Chain Management

	Dataset and Tasks
	Dataset
	Data Abstraction - Modelling Calculation Families as Graphs
	Part Contraction
	Task Abstraction

	Solution: your proposed infovis solution.
	Visual Encoding and Idiom
	Implementation
	Scenario of Use

	Milestones
	Scenario Illustrations
	Planning Roadmap

