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Fig. 1: The Underutilized Constraint Detector.

Abstract— Visualizing supply chain networks is difficult but important. Analyzing supply chains as node-link graphs can reveal
topological information about the dependencies that exist between parts and the resources those parts depend on. In previous work,
we developed a heuristic algorithm that detects underutilized components in a supply chain. In this work, we present UCoD: the
Underutilized COnstraint Detector, a tool that highlights the output of this heuristic algorithm, and allows supply chain planners to
visualize the structure of their supply chain, and help them identify underutilization and anomalous patterns and trends in their network.
UCoD consists of a juxtaposed view of a node-link diagram and an adjacency matrix of the supply chain graph, and a superimposed
line chart that allows supply chain planners to inspect time-series of utilization for the nodes in their network. This functionality allows
supply chain planners to verify the output of our heuristic algorithm and simplify their product structures.

Index Terms—Supply chain management, Supply chain visualization

1 INTRODUCTION

Kinaxis is a supply chain management company that models the prod-
uct structures of its customers using graphs. A supply chain product
structure is a complete description of how something gets made. To
schedule a product structure, one must consider all of its constituent
parts. In such a calculation, certain parts may depend on others. For
example, the assembly of a bicycle depends on the assembly of a cas-
sette, which itself depends on the assembly of individual cassette-cogs.
These one-way dependencies can be calculated by maintaining that
every dependant part relies on the scheduling of its parent parts.

However, applying the same logic without additional considera-
tion to multi-way dependencies could cause deadlocks and conflicting
schedules. In a multi-way dependency, multiple parts rely on a shared
constraint. For example, a pair of different-sized cogs that get assem-
bled on the same production line. If these parts were scheduled in
isolation, the resulting production schedules could conflict with one an-
other. To address this, parts that share common constraints are grouped
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into structures known as Calculation Families.
Inclusion in calculation families is a transitive operation that can re-

sult in the merging of families. For example, if two calculation families
contain parts that share common constraints, then the two families will
be merged into a single calculation family (See Fig. 2). The scheduling
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Fig. 2: Merging of Calculation Families. Since parts A and B share
constraint X , they must be in the same calculation family. Similarly,
Parts B and C share constraint Y , so they must be in the same family.
Therefore, Parts A, B, and C are grouped into the same calculation
family.

algorithms used by Kinaxis to schedule their customers’ product struc-
tures are parallelized across calculation families. Therefore, the fewer
families that a customer has in their product structure(s), the slower
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the algorithms will be executed. Furthermore, having fewer families
usually means that each family will be larger, further hindering parallel
execution.

This project builds upon work completed in 2020 in collaboration
with Carleton University’s Computational Geometry Lab and Kinaxis
with funding provided by the NSERC-Engage Alliance Grant. In said
work, we defined a graphical model of calculation families and auto-
mated the detection of underutilized constraints in calculation families
using a recursive minimum-cut removal [23] algorithm.
The mincut removal algorithm can efficiently detect underutilized con-
straints in calculation families and these results can be used by supply
chain planners to optimize scheduling. However, before committing
to the removal of underutilized constraints from a calculation family,
there would be an added advantage to the visualization of the structure
of the families. Since calculation families may contain 1000s of nodes
and 10000s of edges, developing a simplified visual representation that
summarizes the calculation family graph and highlights the presence of
underutilized constraints would help facilitate the interaction of supply
chain planners with these complex data structures.

We propose UCoD (The Underutilized Constraint Detector) - a tool
that will allow supply chain planners to visualize, query, and search the
calculation families in their product structures. This graphical repre-
sentation of calculation families will take the form of an interactive,
web-based, node-link diagram that will display the high-level structure
of calculation families and the properties of underutilized constraints.
Given this information, the user may decide to remove the highlighted
constraints from the graph. The removal of these constraints from the
graph will split up calculation families substantially, while still main-
taining a valid and feasible scheduling plan. As a result, the parallel
scheduling of the (now smaller) families will be faster.

2 RELATED WORK

2.1 Supply Chain Management

Visualizing supply chains helps the user to:

1. Simplify the supply chain network [14],

2. Identify transportation bottlenecks or geographic concentrations
[2]

3. Find alternate supply chain structures [2]

Traditionally, supply chains are represented as directed graphs or
“netchains” [16]. These methods aid in the visualizations of the topol-
ogy and dependencies that exist in supply chains. This visual analysis
reduces the user’s cognitive load and expedites exploration by project-
ing emergent relationships between entities [7].
However, representing supply chains using visual interfaces is still in a
nascent stage. Minegishi and Thiel [19] used causal loop diagrams to
represent supply chain interactions. Hu et al. [10] developed a frame-
work for visually representing the geographical attributes of a supply
chain using a case study from the transport container industry. Finally,
Kassem et al. [15] developed a visualization scheme that maps relevant
information to the progress of building construction (including the
construction materials’ supply chain).

2.2 Graph Visualization

In this work, we’ll represent Node-Link (NL) diagrams in 2D space.
These diagrams work well with small, sparse networks, but are poorly
readable with large and highly connected graphs. Plotting large net-
works becomes difficult when nodes are placed in a constrained 2D
space. A reoccurring problem that is observed when plotting large
networks is the production of “hairballs” [20] - described as a visual
clutter of occluded nodes and edges in large, dense graphs. To address
this, node placement could be done using force-directed layouts [9, 12].
By assigning repelling forces to edges and nodes based on their relative
position, these algorithms attempt to maintain that all edges are of more
or less equal length and that there are as few crossing edges as possible.

Force-directed layout algorithms have difficulty converging to a
placement solution in a reasonable run-time. Also, because the place-
ment of nodes is not deterministic, identical layout reproduction can be
challenging. Force-directed placement algorithms search in a way that
can get stuck in local minima that may not be the optimal solution to the
placement problem. To address these issues, multilevel force-directed
placement algorithms have been developed [9]. These algorithms aug-
ment the original network with a derived cluster hierarchy to form a
compound network. The cluster hierarchy is computed by coarsening
the original network into successively simpler networks. This approach
is better at avoiding local minima and can provide reproducible gen-
eral placements. Finally, the run-time of multilevel force-directed
placements is also improved because individual clusters are redefined
independently as smaller networks.

The Adjacency Matrix (AM) is another way to visualize graphs.
The rows and columns of this matrix are indexed by the nodes in the
graph. If an edge ei j exists between nodes vi,v j ∈ G(V,E) (where
G(V,E) is the graph, and V,E are the sets of nodes and edges in G),
then the i, jth entry in the AM will be filled. These entries can be filled
with a boolean value, an edge weight, or a colour to encode an edge
attribute [17]. Such an implementation can achieve high information
density, up to a limit of one thousand nodes and one million edges.
An aggregated multilevel matrix view could handle up to ten billion
edges [20]. While an NL diagram requires the entirety of the graph to
be shown, only half of the AM needs to be shown for an undirected
graph, because a link from node vi to node v j implies a link from v j to
vi [20]. Matrix views don’t suffer from non-deterministic placement,
because the area and the dimensions of the matrix are fixed. One
major weakness of matrix views is unfamiliarity: most users can easily
interpret NL views but not matrix views [20].

We would like to enable supply chain planners to view the topology
of their product structures after the removal of underutilized constraints.
To address node and edge occlusion, we hypothesize that contracting
nodes and edges into “meta-nodes” and “meta-edges” will help de-
clutter our visualization. PivotGraph [28] combines nodes based on
their similarity and displays the graph nodes on a grid with two axis-
aligned, categorical attributes. Once the nodes have been contracted,
PivotGraph assigns each dimension a row/column and places a vertex
in the corresponding row/column for each attribute. It then draws in
the connections between each vertex, with the width of the edge repre-
senting the number or strength of the connection between the vertices.
Honeycomb [27] also aggregates nodes but uses a predefined hierarchy
to aggregate the cells of an adjacency matrix to display social networks
with millions of connections.

To view a supply chain graph, we will incorporate the NL and
AM views of graphs. The NL view will allow the user to view the
topology of the supply chain graph and the AM view will allow the
user to intuitively assess the sizes of the two disconnected components
produced by the removal of underutilized constraints.

3 DATASET AND TASKS

3.1 Dataset
Kinaxis has provided the authors with an anonymized customer’s
dataset. Utilization of the Family Separation Dataset was conditioned
upon compliance to a Non-Disclosure Agreement between Kinaxis and
the authors.

Kinaxis’ Family Separation Dataset contains 199 807 parts, 8 251
constraints, and 2 989 families. The dataset consists of three tables:

1. Edges - Part to Constraint: defines which Parts depend
on which Constraints. Part and Constraint nodes are implied by
this table.

2. Edges - Part to Family: defines which Parts belong to
which Calculation Families; a key-value map between Families
and their constituent parts. The inclusion of constraints in families
is implied by this table. Specifically, if Family f1 contains Part
p1, and Part p1 is dependent on Constraint c1, then Family f1
contains Part p1 and Constraint c1.

https://cglab.ca/
https://www.nserc-crsng.gc.ca/Professors-Professeurs/RPP-PP/Engage-engagement_eng.asp


Fig. 3: Cumulative Distribution Plot: Number
of Parts Per Family

Fig. 4: Cumulative Distribution Plot: Number
of Constraints Per Family

Fig. 5: Cumulative Distribution Plot: Propor-
tion of Underutilized Constraints Per Family

3. Constraint Utilization: contains constraint utilization ob-
servations over time.

Every constraint utilization observation is attributed with the following
features:

• The constraint capacity, p≥ 0: A scalar value that indicates the
constraint’s total capacity.

• The constraint load, l ≥ 0: A scalar value that indicates how much
of the constraint’s capacity was utilized (in aggregate) by all of
its dependant parts.

Using these attributes, the following metrics are derived:

• The constraint utilization, u := l/p.

• Due to the dynamic nature of constraint load and capacity, an
important metric to observe is the maximum constraint utiliza-
tion. This metric is defined to be the largest constraint utilization
observed over the entirety of the dataset.

• A user-defined threshold, 0 < ε < 1, defines constraint underuti-
lization. If a constraint’s max constraint utilization is below ε ,
then that constraint is underutilized (See Fig. 6).

• The candidate constraints for removal are underutilized con-
straint nodes in a family graph whose removal from the graph
will result in two disconnected subgraphs of roughly equal size.

Fig. 6: The constraint utilization time-series view in UCoD. Because
the constraint’s utilization never exceeds ε = 0.8, it is considered to be
underutilized.

3.2 Data Abstraction
The dataset and derived quantities and categorizations from Section
3.1 define an undirected node-link graph. Nodes in the graph are
either Parts or Constraints, where a Part node is connected to at least
one Constraint. The undirected edge between a Part and a Constraint
indicates a Part-Constraint Dependency: all part nodes adjacent to a
constraint node are dependent on that constraint.

There are 4 categories of constraint nodes:

1. Underutilized Constraints.

2. Constraints with No Utilization History: these are constraint
nodes that belong to the calculation family, but do not have any
constraint utilization observations.

3. Candidate Constraints for Removal.

4. Utilized Constraints: constraints that do not belong to any of the
above categories.

Finally, constraint utilization for each constraint node is a derived
attribute that defines a time-series of utilization observations for that
constraint.

3.3 Task Abstraction
The goal of this work is to propose the removal of constraint nodes
that would both significantly reduce the family size, and continue
to represent a feasible and reasonable scheduling plan. The set of
candidate constraints for removal will be identified using the recur-
sive minimum-cut removal algorithm developed in our previous work.
These candidates will be displayed to the user, who may then decide
to remove the proposed constraints from the family graph. We intend
UCoD to allow supply chain planners to:

1. Explore and analyze the topology of the calculation family graph.

2. Given a candidate constraint for removal, compare the sizes of
the two subgraphs induced by its removal.

3. Identify anomalous constraints in the graph (constraints that were
entered erroneously into the graph, or constraints that are no
longer being utilized).

4. Compare utilization patterns between constraints.

Given the ability to perform these tasks, we envision two outcomes
that could result from a supply chain planner’s interaction with UCoD.

1. Upon inspection of the Candidate Constraint for Removal, the
user may decide that the constraint should not be removed from
the graph. This may be due to a suboptimal split of unequal sizes,
or from an observed trend of increased utilization by the candidate
constraint.



2. Otherwise, the user may choose to remove the candidate con-
straint from the graph. The family size will be substantially
reduced, and the scheduling of the partitioned family will be opti-
mized. The new scheduling calculation induced by the split-up
family will be monitored by Kinaxis’ supply chain planners to
verify that it continues to represent a valid plan.

4 UCOD

4.1 Visual Encoding and Idiom

We display Calculation Families as Node-Link Diagrams that can be
contracted and laid-out to reduce node and edge occlusion. We juxta-
pose this display with an adjacency matrix view. Lastly, we allow the
user to select constraints in the graph to view their utilization histories.

4.1.1 Family Selector

The Candidate Constraints for Removal are displayed in a table. Each
row in the table corresponds to a calculation family that has been
identified by the recursive mincut algorithm to contain a candidate
constraint for removal. The user can select each calculation family to
display the node-link view corresponding to it.

Fig. 9: Calculation Families that contain underutilized constraints
viewed in a table. Clicking on the Component ID in a row redirects the
user to Node-link view of that Calculation Family.

4.1.2 Node-Link Diagram

In this view, point marks signify part and constraint nodes and line
marks signify edges between parts and constraints. We use hue and
size to distinguish between parts and different types of constraints (See
Section 3.3). Different shapes (circle, diamond, square) are also used to
encode the different constraint types so that they could be more easily
identified by the user. We encode the candidate constraint for removal
using a designated hue so that it stands out in the graph, and use dashed
edges to represent its outgoing links. We include a collapsible legend
in this view to aid first-time users (See Fig. 7). Hovering over a node
or an edge displays the label of the node or edge. The user can zoom-in
to specific areas of the graph by scrolling the mouse wheel.

4.1.3 Part Contraction

Some parts are redundant and could be contracted to reduce family size
and occlusion. There may exist parts that are similar in the sense that
they are connected to the same set of constraints. These “identical” part
nodes can be contracted to form a single meta-node (See Fig. 10). The
weight of the edge between the new meta-node and the constraint ci
remains uci (since it was equal across all identical parts). The user can
contract all part nodes in the graph by clicking a button. Instead of
precomputing this contraction and automatically displaying the con-
tracted representation to the user, we decided to have the user manually
perform this operation. This was done to ensure that the user is aware
of the total number of parts that exist in the graph, and how many parts
are contracted to produce each-meta node. In addition, we encode the
number of parts that were contracted to produce a meta-node using the
size of the meta-node.

(a) A calculation family (b) A contracted calculation
family

Fig. 10: Part Contraction.

4.1.4 Force-Directed Placement

When clicking on a Calculation Family in the Family Selector (Section
4.1.1), the user is redirected to a node-link view of that family. The
layout for this view is precomputed for each family using the Scalable
Force Directed Placement (SFDP) algorithm [9]. However, once the
user contracts all parts in the graph, the resultant graph may still contain
some occluded nodes and edges. So, we’ve implemented dynamic
layout options. These options allow the user to dynamically lay out
the contracted graph using the SFDP or the Reingold-Tilford (RT) tree
layout [21] algorithms. In addition, the user can choose to use the RT
tree layout with a polar coordinate post-transformation, to produce a
circular tree layout. Finally, we allow the user to manually rotate the
NL view. See Figures 11 - 13 for an illustration.

4.1.5 Adjacency Matrix

In certain cases, it is not evident whether the removal of the candidate
constraint will produce two subgraphs of approximately equal size. To
help the user quantify the relative sizes of the induced subgraphs, we
allow the user to toggle a juxtaposed AM view of the contracted graph.
The cells of the AM represent the outgoing edges from all constraints
in the graph. We maintain a consistent colour encoding across the NL
and AM views by colouring the matrix cells using the same hues of
the constraints they correspond to in the graph. The ordering of the
columns and rows of the matrix correspond to an ordering imposed by
the y-coordinates of the constraint nodes in the Reingold-Tilford Tree
layout of the graph (See Fig. 14). The AM container can be dynamically
resized so that graphs with 100s of nodes can be discernable in the user’s
browser. However, since we do not perform any node aggregation, the
AM view becomes illegible with graphs with more than 1 000 nodes.
A dashed line is drawn on the Adjacency Matrix’s anti-diagonal. This
line aims to help the user gauge the relative sizes of the subgraphs
induced by the removal of the candidate constraint. If the candidate
constraint is close to or lies on the anti-diagonal, then the removal of
this constraint will produce subgraphs of roughly equal size.



Fig. 7: A node-link view of a calculation family with a visible legend. Fig. 8: The same calculation family from Fig. 7 visualized through a
filter that simulates Protanopia colour blindness. The colour palette
that was used to encode the types of nodes in the graph maintains a
visible difference between the different types of constraints.

Fig. 11: An uncontracted subgraph in UCoD. Fig. 12: A contracted subgraph in UCoD. Note
that many constraints are occluded.

Fig. 13: The subgraph in UCoD following the
application of the SFDP algorithm to the sub-
graph in Fig. 12. Node occlusion and edge
crossings are minimized.



Fig. 14: A node-link view juxtaposed with the adjacency matrix view
of a contracted calculation family. One-directional linked highlighting
allows the user to map the nodes in the NL view to the corresponding
nodes in the AM. When a node is hovered over in the NL diagram, the
same node is highlighted in black in the AM.

4.1.6 Superimposed line chart
To identify constraints that are no longer being utilized, or compare
utilization histories across multiple constraints, the user must be able
to view the utilization time-series associated with the constraints in
the NL view. To do this, the user can click on a constraint node in
the graph to toggle a superimposed line chart view. By clicking on a
constraint, that constraint becomes active. This is denoted by a unique
shape encoding of a cross with a black node border. By holding the
spacebar and clicking on additional constraints, the active constraints
are superimposed in the line chart view. Each line chart that is displayed
is encoded using a unique shape (either a circle, cross, rhombus, square,
pentagram, triangle, or a Y shape) and colour (using the Tableau 10
colour palette [24]). Each time-series observation is encoded using
the shape and hue for that line, and the observations are connected
using a line mark with the same hue. The values for the shared vertical
axis span the range [0,1], since all time-series represent the constraint
utilization ratio. The horizontal axis is constructed using the union of
all the dates in the active constraints’ time-series.

By hovering over a specific constraint, the opacity for all other lines
in the chart is reduced, and the time-series that corresponds to that
constraint is highlighted. This allows the user to focus on the utilization
history of a constraint of interest, while still being able to compare its
trends of utilization to the other selected constraints. See Figures 15 -
16 for an illustration.

4.2 Implementation
1. Data ingestion and preprocessing: The preprocessing pipeline

was implemented using the pandas python module [18] and
was reused from our previous work. This included removing
duplicate constraint utilization observations, and the detection
of underutilized constraints using the recursive minimum cut
algorithm.

2. Graph construction and layout: Using the tables described in
Section 3.1, we used the igraph python [5] module to construct
the node-link representation of all calculation families. To pre-
compute the SFDP layout of calculation families, we used the
command-line interface for graphviz [6]. To allow the user to
dynamically lay out the node-link view, we implemented a flask

[22] server that could ingest the coordinates of the nodes in the
NL view, calculate the coordinates in the chosen layout, and out-
put the new coordinates to the frontend in the Javascript Object
Notation (JSON) format.

3. NL View: we bootstrapped our implementation for the NL view
using sigmajs [11]. We also adapted some of the node selection
functionality from an active fork of the sigmajs repository [8].

4. AM, Superimposed Line Chart Views: The interactive AM and
line chart views were implemented using D3 [4]. We adapted D3
blocks that produced an adjacency matrix [25] and multiline chart
[13] for use in UCoD.

5 SCENARIO OF USE

Andrea is a Supply Chain Planner at Kinaxis. She has been tasked with
the integration of a new client’s supply chain into Kinaxis’ concurrent
planning platform. Given the constraint utilization history and projec-
tions in the customer’s product structure, she constructs a dataset of
Calculation Families. However, on the first few iterations of the schedul-
ing calculations, she notes that the calculations take too long. Andrea
suspects that some of the calculation families in the dataset might be
too large. She wonders whether the client has erroneously included
underutilized constraints in certain families, and whether removing said
constraints would speed up the parallel scheduling calculations. To find
out whether this is true:

1. Andrea uploads the new client’s Calculation Family dataset to
UCoD.

2. The recursive minimum-cut removal algorithm returns that Family
f1 contains an underutilized constraint whose removal from the
graph will split up the family substantially.

3. Andrea selects this family in UCoD to visualize it.

4. Andrea is unable to view the occluded and unordered clusters of
constraints and parts in the family. She decides to contract all part
nodes in the graph, and apply the sfdp layout to the graph.



Fig. 15: A superimposed line chart that represents the utilization time-
series for the active constraints in the NL view. The order of selection of
active constraints may cause occlusion: the time-series for constraints
that were selected more recently occlude the time-series for constraints
that were selected before.

Fig. 16: Hovering over a constraint in the NL view highlights that
constraint’s time-series in the superimposed line chart.

5. Andrea clicks on the Candidate Constraint for Removal, and notes
that its utilization history consists of a single observation. It could
be that this constraint was introduced into the calculation family
erroneously, or that it was only required for the scheduling of this
product structure on a specific date, and was not subsequently
removed from the graph.

6. To find out why the candidate constraint was introduced to the
product structure, and whether it can be removed, Andrea high-
lights nearby constraints in the graph to view their utilization
histories in the superimposed line chart. She notes that the can-
didate constraint’s neighbouring nodes were all utilized on the
same date.

7. Using this information, Andrea decides to remove the underuti-
lized constraint from the graph. This removal partitions the graph
into separate components, and so will optimize the scheduling of
this product structure. However, having removed this constraint,
she will continue to monitor this product structure to verify that it
continues to represent a valid plan.

6 LIMITATIONS

To display the utilization time-series for a constraint, that constraint
must be selected by the user. When selected, an active constraint is iden-
tified by a cross shape with a black border. A clearer way to highlight
the set of active constraints would have been to set their node labels
as fixed while they are selected. We were not able to implement this
functionality using the sigmajs Application Programming Interface.
Currently, hovering over nodes and edges displays their label, but once
we select a constraint to display its utilization time-series, its label
disappears.

Using an additional colour palette for the superimposed line chart
introduces two limitations to our design. First, colour-blind individu-
als will have difficulty in distinguishing certain hues in the Tableau10



Colour Palette. Second, the new colour encoding for the constraints
is not maintained across the line chart and NL views; selecting a con-
straint to display in the line chart does not change the constraint’s
node colour in the node-link view. This may result in an unclear map-
ping between active nodes and their corresponding line charts. We
attempted to address this ambiguity by including a legend in the line
chart, and implementing one-directional linked highlighting between
the NL diagram and the line chart.

The AM view and it’s anti-diagonal are shown to the user to compare
the sizes of the two subgraphs that are induced by the removal of
the candidate constraint. It would have been beneficial to explicitly
include the sizes of the product structure and the two subgraphs in the
visualization, to highlight the relative sizes of the subgraphs.

Finally, UCoD currently does not fully support linked highlighting
across all its views. Hovering over a constraint node in the NL view
highlights that node in AM view and the constraint utilization time-
series in the superimposed line chart. However, hovering over a node in
AM view does not highlight that node in the NL view, and hovering over
a line in the line chart does not highlight its corresponding constraint.
Bidirectional linked highlighting would be especially valuable in the
context of the AM. Since the rows and columns of the AM are unlabeled,
the user is unable to map nodes in the AM to their correspondents in
the NL view. To identify a node in the AM, the user needs to selectively
hover over nodes in the NL view, until the node to be identified is
highlighted in the AM. When dealing with product structures with
more than 100 nodes, this is tedious and possibly infeasible.

7 FUTURE WORK

First, we’ve established that the current implementation of the AM
view in UCoD is not suited to display product structures with more than
1000 nodes. However, in certain cases, product structures can contain
clusters of tightly connected parts and constraints. These clusters can
be detected using community detection algorithms [3, 26] that produce
hierarchical community separations given an input graph, and assign
each node in the graph to a community. This hierarchy can be used
to simplify the AM view. After assigning each node to its detected
community, we could contract all nodes in the same community to
produce meta-nodes, and visualize the aggregated, smaller graph using
the adjacency matrix. To “zoom-in” on the communities denoted by
the meta-nodes, users could click on their corresponding entries in their
adjacency matrix. Previous work has produced interactive visualiza-
tions of the hierarchy trees of graphs [1], so we would be interested in
exploring the benefits of computing a hierarchical clustering that could
simplify the representation of product structures.

Second, due to the time constraints imposed by the course, the use
of the superimposed line chart was not justified with a user study. In
certain cases, highlighting multiple constraints with overlapping time-
series can result in illegible line charts (See Fig. 15). Future work
should empirically compare this design choice with juxtaposed filled
area charts to assess the effectiveness of each idiom in the context of the
tasks of outlier detection, trend identification, and constraint utilization
time-series comparison.

8 LESSONS LEARNED

We attempted to use the concepts and idioms we learned in class and
the textbook to develop a reasonable solution to a domain-specific
problem. One concept that required careful iteration was the choice of
an unambiguous visual encoding. Specifically, we experimented with
different colour palettes for the nodes in the graph while attempting to
strike a balance between a high level of contrast between categories of
constraints, and using a colourblind accessible palette. This consider-
ation was further complicated when we introduced the superimposed
line chart view, which required the addition of a new colour palette to
distinguish between different time-series.

Another important lesson we’ll take away from this work is the criti-
cal importance of formulating a concrete and well-researched imple-
mentational plan in the first phases of a design study. At the beginning
of the project, we had a rough outline of the frameworks we will use
to implement the features we thought would be useful to provide in

UCoD. However, we adapted our visual encoding in the process and
replaced certain features we thought would be useful for users with
others. This forced us to explore the landscape of tools, packages, and
languages that we could use for our purposes near the end of the course,
which was stressful and time-consuming. Still, this exploration exposed
us to the extensibility and ubiquity of D3, which we are sure we will
continue to use for information visualization in our future computer
science research.

9 CONCLUSION

In UCoD, a supply chain calculation family is represented using a
juxtaposed node-link plot and an adjacency matrix view. Our tool
enables supply chain planners to interactively explore utilization trends
and anomalies of the constraints in the graph. Each product struc-
ture visualized in UCoD is known to contain a candidate constraint
for removal: a node that is consistently underutilized, and whose re-
moval from the graph will disconnect the graph into roughly equal
sizes. UCoD highlights candidate constraints using dashed edges with
a distinct hue for ease of identification by the user. Selecting constraints
in UCoD toggles the utilization time-series for the selected constraints.
Together, these capabilities allow supply chain planners to visualize the
topologies of their product structure and analyze underutilization in the
constraints of their product structure. Finally, by removing underuti-
lized constraints from their calculation families, planners can optimize
the parallel scheduling of their supply chains.



10 MILESTONES

10.1 Completed Work by Alex Trostanovsky

Name Description Owner Estimate Actual Completed On

Project Pitch 1. Prepare Presentation slides. Alex 6 hours 6 hours Oct. 1

Proposal write up 1. Brainstorm different sections, and de-
liver the document. Alex 4 hours 2 hours Oct. 23

Interactive Constraint
Contraction

1. The user can contract all underutilized
constraints by clicking Contract
All

Alex 16 hours 16 hours Nov. 15

Adjacency Matrix View
1. The node-link view of a calculation

family is accompanied by the adja-
cency matrix view.

Alex 16 hours 12 hours Nov. 22

Data/Graph Input Han-
dler

1. The families containing the candidate
constraints for removal are displayed
to the user.

Alex 10 hours 8 hours Nov. 15

Flask backend
1. Create a server that will calcu-

late graph layout using igraph and
graph-tool

Alex 10 hours 8 hours Nov. 15

Superimposed line Chart
1. The user is able to highlight active

nodes and view their constraint utiliza-
tion history in a collapsible view

Alex 10 hours 16 hours Dec. 9

Proposal Update 1. Revise project report based on notes Alex 4 hours 8 hours Nov. 18

Presentation Preparation
1. Prepare Presentation slides

2. Record and edit final video
Alex 8 hours 16 hours Dec. 10

Final Report 1. Complete the final report Alex 8 hours 12 hours Dec. 14

Table 1: Alex’s Project Milestones



10.2 Completed Work by Nikola Cucuk

Name Description Owner Estimate Actual Completed On

Project Pitch

1. Airbnb booking visualization, prepare
Presentation slides.

2. Plot the free GIS data-set for Vancou-
ver.

Nikola 6 hours 10 hours Oct. 1

Proposal write up 1. Related work and Milestones section Nikola 5 hours 8 hours Oct. 23

Environment setup
1. Setup the environment described in

Section 4.2: Python, JavaScript,
GraphViz

Nikola 2 hours 7 hours Oct. 25-Nov.31

Adjacency Matrix View 1. Plot the DOT language file format as
an Adjacency Matrix Nikola 8 hours 18 hours Nov. 22

MinCut Node/edges viz
enhancement

1. Sweep for the Candidate Constraint in
each family, extract nodes and edges

2. Change the nodes’ and edges’ appear-
ance.

Nikola 6 hours 18 hours Nov. 26

Proposal Update 1. Revise project report based on notes Nikola 4 hours 8 hours Nov. 18

Presentation Preparation
1. Prepare Presentation slides

2. Record video sections
Nikola 8 hours 13 hours Dec. 10

Final Report 1. Complete the final report Nikola 7 hours 12 hours Dec. 14

Table 2: Nikola’s Project Milestones
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