REAL-TIME EXPLORATION OF LARGE SPATIOTEMPORAL DATASETS BASED ON ORDER STATISTICS

Original Work By: Cicero Pahins, Nivan Ferreira, and Joao Comba

Presented By: Vaastav Anand

Background

Motivation

Quantile Datacube Structure

Example Visualizations

Evaluation

SPATIOTEMPORAL DATASETS

"Datasets generated from measuring a set of values across set of locations (spatial dimension) across a time range (temporal dimension)."

PROBLEM: Dataset is too large to perform interactive analysis.

EXISTING SOLUTIONS

- Precomputed Indices that store aggregations of a given dataset as solutions to this problem.
 - Doesn't take into account data distribution
- Gaussian Cubes that support interactive data modelling by describing data distribution using parametric Gaussian distributions.
 - Based on non-robust statistics (mean + covariance)
 - Can't assume real-world data has a normal distribution

Background

Motivation

Quantile Datacube Structure

Example Visualizations

Evaluation

PROBLEMS WITH CURRENT SOLUTIONS

- Memory footprint is too high
- Distributions are approximated using non-robust statistics
- Queries are slow enough to disallow interactive experience
- Queries are limited to count queries

• /

Background

Motivation

Quantile Datacube Structure

Example Visualizations

Evaluation

QUANTILE DATACUBE STRUCTURE

- ► A novel datastructure
- Encode data distributions based on robust statistics
- Uses a non-parametric modelling technique called p-digest
- A novel indexing structure that reduces the large memory footprint

EXAMPLE QUESTIONS

- "How likely is a flight operated by Delta Airlines to be delayed more than 10 minutes at JFK airport?"
- "How does the distribution of flight delays for two airports compare to each other in the past month?"
- "How unusual are the delays experienced by Delta flights on January 29th, 2017?"

INDEXING SCHEME

P-DIGEST DATA SKETCH : T-DIGEST DATA SKETCH

- "Data Sketch": Data Structure that can be easily updated with new or modified data and supports a set of queries whose results approximate queries on the full dataset.
- An optimized version of t-digest data sketch
 - Quantile sketch that supports queries of quantile and cdf estimation.
 - Summarizes the empirical cdf of an input dataset by a set of weighted values called centroids.

P-DIGEST DATA SKETCH : T-DIGEST DATA SKETCH

- "Data Sketch": Data Structure that can be easily updated with new or modified data and supports a set of queries whose results approximate queries on the full dataset.
- An optimized version of t-digest data sketch
 - Quantile sketch that supports queries of quantile and cdf estimation.
 - Summarizes the empirical cdf of an input dataset by a set of weighted values called centroids.
 - Compression Parameter defines the number of centroids
 - Queries for extreme quantiles are made more accurate

P-DIGEST DATA SKETCH

- "Data Sketch": Data Structure that can be easily updated with new or modified data and supports a set of queries whose results approximate queries on the full dataset.
- An optimized version of t-digest data sketch
 - Reduce centroid storage from 40-80 bytes per centroid array to at most 8 bytes for each of the centroid and weighted arrays. Stored as single chunk of floats
 - If all weight values are 1 then weights are not stored.

$\{1, 4.5, 4.75, 5, 5.15, 5.25, 5.5, 10\}$ t ₁ \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow t ₂														
		<u> </u>							cen	troid		2	6	
(a)									we	ight		2	1	
	merg centroid	le(t₁,t	t ₂)	2	4.	75	5	.3	6	5	1	.0		
(0)	weight	1		2	3			3		L		1		
(c)	ce w	ntroid eight (t ₁ , 1	.cd	f(5. 625	075 5.0	5) t ₁)75	.cd	f(5. 375 1	18) 1(0.5) 0.5			

QUERY TYPES

3 types

- ► Quantile queries
- CDF queries: Modeled as inverse of quantile queries
- Pipeline queries: Result of a given query is used as a parameter to another query

Primary Query: select AGGR from QDR where CONSTRAINTS [group by G]

QUERY ALGORITHM

Background

Motivation

Quantile Datacube Structure

Example Visualizations

Evaluation

QUANTILE HEATMAPS

- Instead of using the mean for a given location, use the specified quantile at the location as the aggregate measure
- Quantiles are not sensitive to outliers whereas mean is.
- Powered by QDS's quantile queries

CDF HEATMAPS

- Instead of showing mean, they show high likely a distribution in a given location is to be smaller than a certain value
- Powered by QDS's cdf query

READABLE UNCERTAINTY VISUALIZATIONS

- Interpreting uncertainty visualizations is not easy.
 - Can have high cognitive load
 - Viz researchers have idioms to shift the cognitive load
 - But existing interactive techniques are not efficient
- QDS's cdf query can allow for this interactivity by computing the result for each box plot.

OUTLIER EXPLORATION

- Finding outliers requires users to inspect a large number of data slices over time and space.
- QDS can retrieve approx. distributions over an arbitrary portion of the data very quickly.
- Authors define an outlierness measure supported by QDS's pipeline query.

Background

Motivation

Quantile Datacube Structure

Example Visualizations

Evaluation

MEMORY FOOTPRINT

- ► Comparable memory footprint with HashedCubes.
- ► Better for some datasets, Worse for other datasets

Overall summary of the relevant information for building QDS.									
datasat	cizo	index schema(hits)	payload schoma	QDS M	HC Memory/Time				
uataset	SIZE	index schema(bits)	payload schema	leaf-size = 1	leaf-size $= 32$ or 64	leaf-size $= 32$ or 64			
brightkite	4.5 M	dayOfWeek (3), hourOfDay (5), time (16), lat (25), lon (25)	NA	455 MB/9s	276 MB/7s	366 MB/7s			
gowalla	6.4 M	dayOfWeek (3), hourOfDay (5), time (16), lat (25), lon (25)	NA	711 MB/13s	367 MB/11s	743 MB/13s			
twitter-small	210.6 M	device (3), time (16), lat (17), lon (17)	NA	3.1 GB/05:55m	2.7 GB/05:54m	4.9 GB/10:53m			
twitter	210.6 M	app (2), device (3), language (5), time (16), lat (17), lon (17)	NA	4.6 GB/06:39m	4.2 GB/06:37m	9.4 GB/12:04m			
flights	121.2 M	dep. delay (4), carrier (11), dep. time (16), lat (25), lon (25)	arrDelay, depDelay	1.4 GB/02:50m	1.4GB/02:50m	457 MB/03:56m			
green-taxis-small	42 M	pickupDateTime (16), lat (22), lon (22)	ttlAmount, distance	1.3 GB/01:24m	1.2 GB/01:16m	788 MB/03:56m			
green-taxis	42 M	dayOfWeek (3), hourOfDay (5), pickupTime (16), lat (22), lon (22)	ttlAmount, distance	1.3 GB/01:16m	1.2 GB/01:15m	3.0 GB/01:49m			
yellow-taxis-small	706 M	pickupDateTime (16), lat (22), lon (22)	ttlAmount, distance	9.7 GB/27:53m	9.3 GB/28:04m	7.0 GB/18:14m			
yellow-taxis	706 M	dayOfWeek (3), hourOfDay (5), pickupTime (day), lat (22), lon (22)	ttlAmount, distance	9.7 GB/31:37m	9.3 GB/31:33m	12.6 GB/20:38m			

Overall expression of the velocent information for building ODC

PERFORMANCE

- Measures the performance of count queries.
- QDS is faster than HashedCubes, MonetDB, SQLite, PostgreSQL
- MonetDB, SQLite, PostgreSQL don't provide effective mechanisms for spatial filtering with temporal and categorical constraints.

P-DIGEST APPROXIMATION ERROR

- The error rate is fairly low for low quantiles, high merges, and low # of elements per pivot
 - More accurate when data broken down into more parts
 - Accurate for small input data
 - Large values of compression parameter better for higher quantile estimation.
- The error measured is the relative error of the estimated quantile to the actual empirical quantile

Background

Motivation

🖇 Quantile Datacube Structure

Example Visualizations

Evaluation

WHAT-WHY-HOW FRAMEWORK

> What?

 Large Static Spatiotemporal datasets

> Why?

- Better Memory Footprint
- Quicker Results -> More
 Interactive exploration
- Robust Metrics + Visualizing Uncertainty

➤ How?

- QDS New Datastructure for storing indices of spatiotemporal datasets
- New queries that can approximate quantiles + cdf.

STRENGTHS

- Thorough performance eval
 - Good comparisons vs believable baselines
- Built on/Promotes usage of Robust Statistics
- ► Allows for exploration of uncertainty in datasets.

WEAKNESSES

- Lack of Validation: No User Study
 - One of the goals was more interactivity. Can't validate w/o user study.
- Lack of Error Estimation
 - The distributions are approximations but currently the user has no way of knowing how good the approximation is
- ► Lack of Detail: Building QDS with a dataset. (minor)
 - Needs more detail about how to specify the schema
- ► Meta Comment: Should use a spellchecker. (minor)

CONCLUSION

- Presents QDS: a fast in-memory data structure
 - Supports uncertainty exploration + data distribution estimation
 - Designed for large static spatiotemporal datasets
- Source Code: <u>https://github.com/cicerolp/qds</u>
- Video: <u>https://vimeo.com/262669555</u>

