Ch 7/10: Tables, Color

Paper: D3

Tamara Munzner
Department of Computer Science
University of British Columbia

[Paper: D3 System]

D3

- **Objectives**
 - **compatibility**
 - **debugging**
 - **performance**
 - **related work typology**
 - **documents transforms**
 - **graphs libraries**
 - **infrovis systems**
 - **general notes about related work sections are a mini-taxonomy/typology**

- **Declerative tools**
 - **imperative tool/libraries**
 - **say exactly how to do it**
 - **familiar programming model**
 - **OpenGL, prefuse**
 - **declarative: other possibility**
 - **just say what to do**
 - **Protovis, D3**

- **WebGL/OpenGL**
 - **graphics library**
 - **pros**
 - **power and flexibility, complete control for graphics**
 - **hardware acceleration**
 - **multiple language bindings (C, C++, Java (w/ JGL))**
 - **cons**
 - **big learning curve if you don't know already**
 - **no vis support, must roll your own everything**
 - **example app: TreeJuxtaposer (OpenGL)**

- **Prefuse**
 - **infovis toolkit, in Java**
 - **fine-grained building blocks for tailored visualizations**
 - **pros**
 - **heavily used (previously)**
 - **accessibility**
 - **power and flexibility, complete control for graphics**
 - **pros**
 - ** stealing the vis idea from previous traits**
 - **cons**
 - **even more different from traditional programming model**
 - **example app: MizBee**

- **Protovis**
 - **declarative infovis toolkit, in Javascript**
 - **Protovis meets Document Object Model**
 - **pros**
 - **seamless integration with DOM**
 - **accessibility**
 - **massive user community, many third-party apps/libraries on top of it, lots of docs**
 - **cons**
 - **even more different from traditional programming model**
 - **example apps: many**

- **InfoVis Reference Model**
 - **conceptual model underneath design of Prefuse and many other toolkits**
 - **heavily influenced of infovis (including nested model)**
 - **aka infovis pipeline, data state model**

- **Declarative tools**
 - **imperative tool/libraries**
 - **say exactly how to do it**
 - **familiar programming model**
 - **OpenGL, prefuse**
 - **declarative: other possibility**
 - **just say what to do**
 - **Protovis, D3**

- **D3**
 - **declarative infovis toolkit, in Javascript**
 - **Protovis meets Document Object Model**
 - **pros**
 - **seamless integration with DOM**
 - **accessibility**
 - **massive user community, many third-party apps/libraries on top of it, lots of docs**
 - **cons**
 - **even more different from traditional programming model**
 - **example apps: many**
D3 features:
- Document transformation as atomic operation
- Scene changes vs representation of scenes themselves
- Immediate property evaluation semantics
- Avoid confusing consequences of delayed evaluation

Validation
- Performance benchmarks
- Page load times
- Accessibility
- Adaptability
- Everybody has voted with their feet by now!

D3 capabilities:
- Query-driven selection
 - Selection: filtered set of elements; queries from the current doc
- Site partitioning/grouping
- Operators act on selections to modify content
- Iterators via or instead transitions with attribute/series interpolations
- Event handlers for interaction
- Data binding to sceneraph elements
 - Data maps bind input data to elements
 - Error, update, exit; substructures
 - Visibility: available for subsequent re-selection
 - Sort, filter

Idiom: Scatterplot
- Express values
- Quantitative attributes
- No keys, only values
- Data
 - 2 quant attribs
 - Mark: points
 - Color: var position
 - Tasks
 - Fisheye, outliers, distribution, correlation, clusters
- Scalability
 - Hundreds of items

Ch 7: Arrange Tables

Encode tables: Arrange space

Idiom: Bar Chart
- One key, one value
 - Data
 - 1 cong attrib, 1 quant attrib
 - Mark: lines
 - Channels
 - Length as express quant value
 - Spatial regions one per mark
 - Separated horizontally aligned vertically
 - Ordered by quant attrib
 - By label (alphabetical), by length attrib (data-driven)
 - Task
 - Compare, lookup values
 - Scalability
 - Dozens to hundreds of levels for key sort

Keys and values
- Key
 - Independence attribute
 - Used as unique index to look up items
 - Simple tables: 1 key
 - Multidimensional tables: multiple keys
- Value
 - Dependent attribute, value of cell
 - Classify arrangements by key count
 - 0, 1, 2, many...

Idiom: Streamgraph
- Generalized stacked graph
 - Emphasizing horizontal continuation
 - As vertical items
 - 2 cong attrib, 1 quant attrib
 - Mark: vertical stack of line marks
 - Channels
 - Length and color bars
 - Spatial regions one per glyph
 - Aligned full glyph, lowest bar component
 - Conditional bar superimpose
 - Task
 - Same-to-whole relationship
 - Scalability
 - Several to one dozen levels for stacked attrib

VAD Ch 7: Arrange Tables

Some keys: Categorical regions
- Separate
 - Order
 - Align

Limitation: Hard to know rank. What’s the 4th most? The 7th?

Idiom: Stacked Bar Chart
- One more key
 - Data
 - 2 cong attrib, 1 quant attrib
 - Mark: vertical stack of line marks
 - Channels
 - Length and color bars
 - Spatial regions one per glyph
 - Aligned full glyph, lowest bar component
 - Conditional bar superimpose
 - Task
 - Same-to-whole relationship
 - Scalability
 - Several to one dozen levels for stacked attrib

Limitation: Hard to make comparisons
Choose Bar vs Line Charts
- One key, one value
 - Abstract
 - 2 quant attribs
 - Mark points
 - Line connection marks between them
- Channels
 - Aligned lengths to express quant value
 - Separated and ordered by key strikethrough horizontal regions
- Task
 - Find trend
 - Sequential: marks emphasize ordering of items along key axis
 - Scalar
 - The more male a person is, the taller he is.

Bar Chart Axes
- Labelled axis is crucial
- Avoid cropping y-axis
 - Include 0 at bottom left
 - Or slope increases
- Dual axes controversial
 - Acceptable if comparable
 - Beware, easy to mislead!

Arrange Tables
- Connection marks
 - One key, two (related) values
 - Axes expressiveness principle
 - Implication of trend so strong that it overrides semantics
 - “The race male a person is, the taller he is.”
- Horiz + vert axes: value attribs
- Depends on type of key attrib
 - Bar charts if categorical
 - Line charts if ordered
- Do not use line charts for categorical key attrib
- Value expressiveness principle
- Connection marks emphasize ordering of items along key axis by explicitly showing relationship between axes and the area
- Task
 - Find trend
 - Sequential: marks emphasize ordering of items along key axis
 - Scalar
 - The more male a person is, the taller he is.
- Scalability
 - Hands of key levels, hands of value levels

Connections
- Connection marks
 - One key, two (related) values
 - Axes expressiveness principle
- Implication of trend so strong that it overrides semantics
- “The race male a person is, the taller he is.”
- Horiz + vert axes: value attribs
- Depends on type of key attrib
 - Bar charts if categorical
 - Line charts if ordered
- Do not use line charts for categorical key attrib
- Value expressiveness principle
- Connection marks emphasize ordering of items along key axis by explicitly showing relationship between axes and the area
- Task
 - Find trend
 - Sequential: marks emphasize ordering of items along key axis
 - Scalar
 - The more male a person is, the taller he is.
- Scalability
 - Hands of key levels, hands of value levels

Indexing Line Charts
- Data: 2 quant attributes
 - 1 key: 1 value
 - Derived data: new quant value attrib
 - Index
 - Plot instead of original value
 - Task: change over time
 - Principle: normalized, not absolute
 - Scalability
 - Same as standard line chart

Gantt Charts
- One key, two (related) values
 - Data
 - 1 chart: 2 quant attribs
 - Marks: line
 - One attribute: value attribs
 - Channels
 - High position: start times
 - High length: duration
 - Task
 - Emphasis: temporal overlap, start/finish dependencies between tasks
 - Scalability
 - Dozens of keys
 - Hundreds of value levels

Separate, Order, Align Regions
- Axes orientation
 - Rectilinear: scalability wrt #axes
 - 2 axes best
 - 3 problematic
 - More in afternoon
 - 4+ impossible
- Layout density
 - Dense: spacefilling
 - Order: align
 - 1 Key
 - 2 Keys
 - 3 Keys
 - Many Keys
 - List
 - Recursive subdivision
 - Volume
 - Matrix
 - Rectilinear
 - Parallel
 - Radial

Correlation
- Scattered matrix
 - Positive correlation
 - Diagonal: low-to-high correlation
 - Unrelated
 - Parallel coordinates
 - Positive correlation
 - Parallel line segments
 - Negative correlation
 - All segments cross at baseline
 - Uncorrelated
 - Scalability

Pie Chart, Polar Area Chart
- Pie chart
 - Area marks with angle channel
 - Accuracy: angle/area less accurate than line length
 - Area length also less accurate than line length
 - Polar area chart
 - Area marks with length channel
 - More direct analog to bar charts
- Data
 - 1 key strikethrough, 1 quant value attrib
 - Task
 - Part-whole judgements

Normalized Stacked Bar Chart
- Task
 - Part-to-whole judgements
- Normalized stacked bar chart
 - Stacked bar chart, normalized to full width
 - Single stacked bar equivalents to full pie
 - High information density requires narrow rectangle
- Pie chart
 - Information density requires large circle

Glyph Maps
- Rectilinear good for linear vs nonlinear trends
- Radial good for cyclic patterns

Orientation Limitations
- Rectilinear: Scalability wrt Axes
 - 2 axes best
 - 3 problematic
 - 4+ impossible
 - Parallel: unfamiliarity, training time
 - Radial: perceptual limits
 - Angles lower precision than lengths
 - Symmetry between angle and length
 - Can be exploited

Scatterplot Matrix
- Scatterplot with line connection marks
 - popular in journalism
 - Horiz: x-axis value attribs
 - Line connection marks: temporal order
 - Alternative to dual-axis charts
 - Horiz: x-axis value attribs
 - Empirical study
 - Engaging, but correlation unclear
Designing for color deficiency: Avoid encoding by hue alone

Color/Lightness constancy: Illumination conditions
- need luminance for edge detection
- fine-grained detail only visible through luminance contrast
- edge detection through luminance contrast
- 2 chroma channels
- red-green (a*) & yellow-blue axis (b*)
- "color blind": one axis has degraded acuity
- 8% of men are red/green color deficient
- beware: only pseudo-perceptual!

Bezold Effect: Outlines matter
- color constancy: simultaneous contrast effect
- lightness (L) or value (V)
- categorical can show identity
- ordered can show magnitude
- poor for encoding
- 2 chroma channels
- color constancy: simultaneous contrast effect
- perceptual processing before optic nerve
- one achromatic luminance channel (L*)
- L from HLS

Corners of the RGB color cube
- need luminance for edge detection
- fine-grained detail only visible through luminance contrast
- edge detection through luminance contrast
- 2 chroma channels
- red-green (a*) & yellow-blue axis (b*)
- "color blind": one axis has degraded acuity
- 8% of men are red/green color deficient
- blue/yellow is rare

Designing for color deficiency: Blue-Orange is safe
- color constancy: simultaneous contrast effect
- lightness (L) or value (V)
- categorical can show identity
- ordered can show magnitude
- poor for encoding
- 2 chroma channels
- color constancy: simultaneous contrast effect
- perceptual processing before optic nerve
- one achromatic luminance channel (L*)
- L from HLS

Corners of the RGB color cube
- need luminance for edge detection
- fine-grained detail only visible through luminance contrast
- edge detection through luminance contrast
- 2 chroma channels
- red-green (a*) & yellow-blue axis (b*)
- "color blind": one axis has degraded acuity
- 8% of men are red/green color deficient
- blue/yellow is rare

Designing for color deficiency: Check with simulator
- redundancy encode: Avoid encoding by hue alone
- luminance
- change shape

Color/Lightness constancy: Illumination conditions
- need luminance for edge detection
- fine-grained detail only visible through luminance contrast
- edge detection through luminance contrast
- 2 chroma channels
- red-green (a*) & yellow-blue axis (b*)
- "color blind": one axis has degraded acuity
- 8% of men are red/green color deficient
- blue/yellow is rare

Bezold Effect: Outlines matter
- color constancy: simultaneous contrast effect
- lightness (L) or value (V)
- categorical can show identity
- ordered can show magnitude
- poor for encoding
- 2 chroma channels
- color constancy: simultaneous contrast effect
- perceptual processing before optic nerve
- one achromatic luminance channel (L*)
- L from HLS

Corners of the RGB color cube
- need luminance for edge detection
- fine-grained detail only visible through luminance contrast
- edge detection through luminance contrast
- 2 chroma channels
- red-green (a*) & yellow-blue axis (b*)
- "color blind": one axis has degraded acuity
- 8% of men are red/green color deficient
- blue/yellow is rare

Designing for color deficiency: Blue-Orange is safe
- color constancy: simultaneous contrast effect
- lightness (L) or value (V)
- categorical can show identity
- ordered can show magnitude
- poor for encoding
- 2 chroma channels
- color constancy: simultaneous contrast effect
- perceptual processing before optic nerve
- one achromatic luminance channel (L*)
- L from HLS

Corners of the RGB color cube
- need luminance for edge detection
- fine-grained detail only visible through luminance contrast
- edge detection through luminance contrast
- 2 chroma channels
- red-green (a*) & yellow-blue axis (b*)
- "color blind": one axis has degraded acuity
- 8% of men are red/green color deficient
- blue/yellow is rare
Categorical Color: Limited Number of Discriminable Bins

- Human perception built on relative comparisons
- Great if color contiguous
- Surprisingly bad for absolute comparisons
- Noncontiguous small regions of color
- Fewer bins than you want
- Rule of thumb: 6-12 bins, including background and highlights

ColorBrewer

- http://www.colorbrewer2.org
- Saturation and area example: size affects salience!

Ordered Color: Rainbow is Poor Default

- Problems
 - Perceptually unordered
 - Perceptually non-linear
- Benefits
 - Fine-grained structure visible and readable
 - Alternatives
 - Large-scale structure fewer hues
 - Fine structure multiple hues with monotonically increasing luminance [eg viridis R/python]

Viridis

- Colorful, perceptually uniform, colorblind-safe, monotonically increasing luminance

Color Encoding

- Map other channels
 - Size, Angle, Curvature, ...
 - Hue, Saturation, Luminance
 - Direction, Rate, Frequency, ...

Shape

- Cyclic
- Diverging
- Ordered
- Sequential

Next Time

- To read
 - VAD Ch 8: Arrange Spacial Dots
 - VAD Ch 9: Arrange Networks
 - Paper: ALBSE-Explorer - visualizing genome sequence assemblies.
- Prepare
 - Project pitches (3 mins each)

Pitch Help

- Think of it like an "elevator pitch"
- Explain big idea
- Convincing us that it's cool/worthwhile
- Give us a sense of how fleshed out it is
- Convince us that it's cool/worthwhile
- Benefits
 - Perceptually unordered
 - Perceptually non-linear
- Alternatives
 - Fine-grained structure visible and readable

Bivariate

- Ordered
- Categorical

Map Other Channels

- Size
 - Length
- Area
- Curvature
- Volume
- Angle
- Shape
- Motion

Pitch Slides

- Next time (Oct 8) everybody must do a 3-min project pitch
- Slides required by 1pm in PDF format
- Submit to Canvas as "Pitch Slides" Assignment
- Both topic & methods
- Deadline for coming up with some concrete project idea
Projects (Reminder)

- groups of 2, 3, or 4
- permission for solo project granted in exceptional circumstances, by petition
- stages
 - milestones along the way, mix of written & in-class
 - pitches (data/task), proposals, peer project reviews
 - formative feedback
- final versions
- final presentations
- final reports
- summative written feedback for both

Projects (Reminder)

- programming
 - common case (I will only consider supervising students who do these)
 - four types
 - problem-driven design studies (target specific tasks/data)
 - technique-driven (explore design choices space for encoding or interaction idiom)
 - algorithm implementation (as described in previous paper)
 - interactive explainer (like Distill articles)
- analysis
 - use existing tools on dataset
 - detailed domain survey
 - particularly suitable for non-CS students
- survey
 - very detailed domain survey
 - particularly suitable for non-CS students

Projects: Design studies (Reminder)

- BYOD (Bring Your Own Data)
 - you (or your teammates) have your own data to analyze
 - thesis/research topic
 - personal interest
 - dovetail with another course (sometimes works, but timing may be tricky)

- FDOI (Find Data Of Interest)
 - many existing datasets, see resource page to get started
 - http://www.cs.ubc.ca/group/infovis/resources.shtml
 - can be tricky to determine reasonable task

More info

- showcase project examples
 - http://www.cs.ubc.ca/~tmm/courses/547-17F/projectdesc.html#examp
- resources (detailed list from 2015)
 - http://www.cs.ubc.ca/group/infovis/resources.shtml
 - inspiration
 - data repositories
 - data wrangling & EDA
 - visualization design
 - sharing your work
- tools directory (updated regularly)
 - https://www.visualisingdata.com/resources/