Ch 8/9: Spatial Data, Networks
Paper: Genealogical Graphs
Paper: ABySS-Explorer

Tamara Munzner
Department of Computer Science
University of British Columbia

CPSC 547, Information Visualization
Week 5: 8 October 2019

www.cs.ubc.ca/~tmm/courses/547-19
News

• today
 – pitches first
 • idea: use Canvas thread to sort out groups
 – discussion/lecture second
 • tables/color (catch-up)
 • today's reading (get started)

• next time (Oct 15)
 – no exercises or guest lecture, catch up on discussions of reading

• week after that
 – **reminder no class Tue Oct 22!**
 – by Fri Oct 25:
 • presentation topics (there will be a Canvas thread)
 • final project teams (there will be a different Canvas thread than discussion one)
Pitches
Ch 8: Arrange Spatial Data
Arrange spatial data

➢ Use Given
 ➢ Geometry
 ➢ Geographic
 ➢ Other Derived

➢ Spatial Fields
 ➢ Scalar Fields (one value per cell)
 ➢ Isocontours
 ➢ Direct Volume Rendering
 ➢ Vector and Tensor Fields (many values per cell)
 ➢ Flow Glyphs (local)
 ➢ Geometric (sparse seeds)
 ➢ Textures (dense seeds)
 ➢ Features (globally derived)
Idiom: **choropleth map**

- **use** given spatial data
 - when central task is understanding spatial relationships
- **data**
 - geographic geometry
 - table with 1 quant attribute per region
- **encoding**
 - use given geometry for area mark boundaries
 - sequential segmented colormap *[more later]*
 - (geographic heat map)

http://bl.ocks.org/mbostock/4060606
Population maps trickiness

- beware!
- absolute vs relative again
 - population density vs per capita
- investigate with Ben Jones Tableau Public demo
 - http://public.tableau.com/profile/ben.jones#!/vizhome/PopVsFin/PopVsFin

Are Maps of Financial Variables just Population Maps?

- yes, unless you look at per capita (relative) numbers

[https://xkcd.com/1138]
Idiom: Bayesian surprise maps

• use models of expectations to highlight surprising values
• confounds (population) and variance (sparsity)

[Surprise! Bayesian Weighting for De-Biasing Thematic Maps. Correll and Heer. Proc InfoVis 2016]

Idiom: **topographic map**

- **data**
 - geographic geometry
 - scalar spatial field
 - 1 quant attribute per grid cell
- **derived data**
 - isoline geometry
 - isocontours computed for specific levels of scalar values
Idioms: isosurfaces, direct volume rendering

- data
 - scalar spatial field
 - 1 quant attribute per grid cell
- task
 - shape understanding, spatial relationships
- isosurface
 - derived data: isocontours computed for specific levels of scalar values
- direct volume rendering
 - transfer function maps scalar values to color, opacity

Vector and tensor fields

- data
 - many attributes per cell

- idiom families
 - flow glyphs
 - purely local
 - geometric flow
 - derived data from tracing particle trajectories
 - sparse set of seed points
 - texture flow
 - derived data, dense seeds
 - feature flow
 - global computation to detect features
 - encoded with one of methods above

Vector fields

- empirical study tasks
 - finding critical points, identifying their types
 - identifying what type of critical point is at a specific location
 - predicting where a particle starting at a specified point will end up (advection)

Idiom: similarity-clustered streamlines

• data
 – 3D vector field

• derived data (from field)
 – streamlines: trajectory particle will follow

• derived data (per streamline)
 – curvature, torsion, tortuosity
 – signature: complex weighted combination
 – compute cluster hierarchy across all signatures
 – encode: color and opacity by cluster

• tasks
 – find features, query shape

• scalability
 – millions of samples, hundreds of streamlines

Ch 9: Arrange Network Data
Arrange networks and trees

- **Node–Link Diagrams**
 - Connection Marks
 - NETWORKS, TREES

- **Adjacency Matrix**
 - Derived Table
 - NETWORKS, TREES

- **Enclosure**
 - Containment Marks
 - NETWORKS, TREES
Idiom: **force-directed placement**

- visual encoding
 - link connection marks, node point marks
- considerations
 - spatial position: no meaning directly encoded
 - left free to minimize crossings
 - proximity semantics?
 - sometimes meaningful
 - sometimes arbitrary, artifact of layout algorithm
 - tension with length
 - long edges more visually salient than short
- tasks
 - explore topology; locate paths, clusters
- scalability
 - node/edge density $E < 4N$

[Image](http://mbostock.github.com/d3/ex/force.html)
Idiom: **sfdp** (multi-level force-directed placement)

- **data**
 - original: network
 - derived: cluster hierarchy atop it

- **considerations**
 - better algorithm for same encoding technique
 - same: fundamental use of space
 - hierarchy used for algorithm speed/quality but not shown explicitly
 - (more on algorithm vs encoding in afternoon)

- **scalability**
 - nodes, edges: 1K-10K
 - hairball problem eventually hits

Idiom: adjacency matrix view

• data: network
 – transform into same data/encoding as heatmap

• derived data: table from network
 – 1 quant attrib
 • weighted edge between nodes
 – 2 categ attribs: node list x 2

• visual encoding
 – cell shows presence/absence of edge

• scalability
 – 1K nodes, 1M edges
Connection vs. adjacency comparison

• adjacency matrix strengths
 – predictability, scalability, supports reordering
 – some topology tasks trainable

• node-link diagram strengths
 – topology understanding, path tracing
 – intuitive, no training needed

• empirical study
 – node-link best for small networks
 – matrix best for large networks
 • if tasks don’t involve topological structure!

Idiom: **radial node-link tree**

- data
 - tree
- encoding
 - link connection marks
 - point node marks
 - radial axis orientation
 - angular proximity: siblings
 - distance from center: depth in tree
- tasks
 - understanding topology, following paths
- scalability
 - 1K - 10K nodes

[Diagram of radial node-link tree]

[Link to detailed explanation: http://mbostock.github.com/d3/ex/tree.html]
Idiom: **treemap**

- **data**
 - tree
 - 1 quant attrib at leaf nodes

- **encoding**
 - area containment marks for hierarchical structure
 - rectilinear orientation
 - size encodes quant attrib

- **tasks**
 - query attribute at leaf nodes

- **scalability**
 - 1M leaf nodes

Link marks: Connection and containment

• marks as links (vs. nodes)
 – common case in network drawing
 – 1D case: connection
 • ex: all node-link diagrams
 • emphasizes topology, path tracing
 • networks and trees
 – 2D case: containment
 • ex: all treemap variants
 • emphasizes attribute values at leaves (size coding)
 • only trees

[elastic hierarchies: combining treemaps and node-link diagrams. dong, mcguffin, and chignell. proc. infovis 2005, p. 57-64.]
Tree drawing idioms comparison

• data shown
 – link relationships
 – tree depth
 – sibling order

• design choices
 – connection vs containment link marks
 – rectilinear vs radial layout
 – spatial position channels

• considerations
 – redundant? arbitrary?
 – information density?
 • avoid wasting space

Paper: Genealogical Graphs
Genealogical graphs: Technique paper

• family tree is a misnomer
 – single person has tree of ancestors, tree of descendants
 – pedigree collapse inevitable
 • diamond in ancestor graph

• crowding problem
 – exponential

• fractal layout
 – poor info density
 – no spatial ordering for generations

Layouts

• rooted trees: standard layouts
 – connection
 – containment
 – adjacent aligned position
 – indented position

Layouts

- **free trees**
 - no root

- **adapting rooted methods**
 - temporary root for given focus
 - containment (nested)

Dual trees abstraction

• explore canonical subsets and combinations, easy to interpret, scales well
• no crossings, nodes ordered by generation
• doubly rooted: x leftmost descend, y rightmost ancestor
 – offset roots from hourglass diagram

Another example

- vertical connection
- horizontal connection
- indented

- upcoming chapters
 - layering
 - aggregation

Interaction as fundamental to design

• navigation
 – topological navigation via collapse/expand on selection
 • parents, children
 • expand can trigger rotation
 – collapsing others
 – layout driven by navigation
 – geometric zoom/pan
 – constrained navigation: automatic camera framing

• animated transitions
 – 3 phases: fade out, move, fade in

• mouseover hover
 – preview dots: expand if collapsed

Custom widget

- popup marking menu
 - flick up or down, ballistic
 - subtree drag-out widget

Paper: ABySS-Explorer
ABySS-Explorer: Design study

• reconstructing genome with ABySS algorithm (Assembly By Short Sequences)

• domain task
 – go from short subsequences to **contigs**, long contiguous sequences
 – extensive automatic support, but still human in the loop for visual inspection and manual editing
 – ambiguities, like repetitions longer than read length

• data, domain: abstract
 – millions of reads of 25-100 nucleotides (nt): strings
 – read coverage, proxy for quality: quant attrib
 – read pairing distances, proxy for size distribution: quant

Contigs: abstraction as derived network data

• derived data: de Bruijn graph/network
 – directed network, compact representation of sequence overlaps
 – node: contig
 – edge: overlap of $k - 1$ nt between two contigs
 – good for computing, bad for reasoning about sequence space

• derived data: dual de Bruijn graph
 – node: points of contig overlap
 – edge: contig
 – better match for arrow diagrams used in hand drawn sketches

• base layout: force-directed

DNA as double stranded: idiom for encoding & interaction

- rejected option: 2 nodes per contig
 - excess clutter if one for each direction
 - choice at data abstraction level

- encoding & interaction idiom: *polar* node
 - encoding: upper vs lower attachment point
 - redundant with arc direction
 - large-scale visibility, without need to zoom
 - arbitrary but consistent
 - interaction: click to reverse direction
 - switches polarity of vertex connections
 - changes sign of label
Contig length: encoding

• rejected option: scale edge lengths by sequence lengths
 – short contigs are important sources of ambiguity, would be hard to distinguish
 – task guidance: only low-res judgements needed, relatively long or short

• encoding idiom: wave pattern
 – oscillation shows fixed number, shapes distinguishable
 – min amplitude at connections so edges visible
 – orientation with max amplitude asymmetric wrt start
 • rejected initial option: max in middle
 • rejected options:
 – color (keep for other attribute)
 – half-lines
 – curvature (used for polar nodes)

• aligned with empirical guidance for tapered edges

Contig coverage: encoding

• rejected options: luminance/lightness
 – not distinguishable given denseness variation from wave shapes
 – also problematic with desire for separable color/hue encoding

• chosen: line thickness
 – not distinguishable for extremely long contigs
 – can address by adjusting oscillation frequency to suitable size
Read pairs: encoding

• data:
 – distance estimate
 – orientation

• encoding:
 – dashed line (shape channel for line mark)
 • implying inferred vs observed sequences
 – color for both dashed line and contig leaf
 – [same length as for contigs]
 – rejected initial option: line color alone
 • too ambiguous
 – interaction to fully resolve remaining ambiguity
 – or color by unambiguous paths in grey

Displaying meta-data

• reserve color for additional attributes
• ex: color to compare reference human to lymphoma genome
 – inconsistencies visible as interconnections between different colors
 – inversion breakpoint visible
 – interaction to check if error in metadata from experiments vs assembly
 • read pair info supports metadata
 – speedup claim vs prev work

Assembly examples

• ideal: single large contig
 – overview/gist: many small contigs remain
• interaction to resolve
 – integrate paired read highlighting on top of contig paths structure

Reading for next time

- VAD Chapter 11. Manipulate View
- VAD Chapter 12. Facet into Multiple Views
- paper:
 – [type: design study]