Ch 8/9: Spatial Data, Networks Paper: Genealogical Graphs Paper: ABySS-Explorer

Tamara Munzner

Department of Computer Science University of British Columbia

CPSC 547, Information Visualization Week 5: 8 October 2019

www.cs.ubc.ca/~tmm/courses/547-19

Arrange spatial data

- Use Given
- → Geometry → Geographic
- → Other Derived → Spatial Fields
- → Scalar Fields (one value per cell)
- → Isocontours → Direct Volume Rendering
- → Vector and Tensor Fields (many values per cell)
- → Flow Glyphs (local)
- → Geometric (sparse seeds)
- → Textures (dense seeds)
- → Features (globally derived)

- -geographic geometry
- -scalar spatial field
- I quant attribute per grid cell derived data
- -isoline geometry

• data

 isocontours computed for specific levels of scalar values

下 十 十 十 カ

たた 十カオ アイケオオ

たたイオオ

Idiom: similarity-clustered streamlines

-3D vector field

• data

- · derived data (from field)
- -streamlines: trajectory particle will follow
- derived data (per streamline)
- -curvature, torsion, tortuosity
- -signature: complex weighted combination
- -compute cluster hierarchy across all signatures
- -encode: color and opacity by cluster
- tasks
- -find features, query shape
- scalability -millions of samples, hundreds of streamlines

Ch 9: Arrange Network Data

Idiom: choropleth map

• use given spatial data

- -when central task is understanding spatial relationships
- data

data

task

News

today

-pitches first

-discussion/lecture second

 tables/color (catch-up) • today's reading (get started)

next time (Oct 15)

week after that

-by Fri Oct 25:

- -geographic geometry -table with I quant attribute per region
- -use given geometry for area mark boundaries

· idea: use Canvas thread to sort out groups

-reminder no class Tue Oct 22!

• presentation topics (there will be a Canvas thread)

-no exercises or guest lecture, catch up on discussions of reading

• final project teams (there will be a different Canvas thread than discussion one)

-sequential segmented colormap [more later]

Idioms: isosurfaces, direct volume rendering

-(geographic heat map)

-scalar spatial field

relationships

color, opacity

• isosurface

• I quant attribute per grid cell

-derived data: isocontours computed for

-transfer function maps scalar values to

[Multidimensional Transfer Functions for Volume Rendering. Kniss, Kindlmann, and Hansen. edited by Charles Hansen and Christopher Johnson, pp. 189–210. Elsevier, 2005.]

-shape understanding, spatial

specific levels of scalar values

direct volume rendering

Population maps trickiness

- beware!
- · absolute vs relative again

Vector and tensor fields

-many attribs per cell

· idiom families

-flow glyphs

-texture flow

-feature flow

→ Node-Link Diagrams

Adjacency Matrix

→ Enclosure

purely local

-geometric flow

· derived data from tracing particle

· global computation to detect features

- encoded with one of methods above

· sparse set of seed points

· derived data, dense seeds

data

• population density vs per capita • investigate with Ben Jones Tableau

Pitches

- Public demo http://public.tableau.com/profile/
- Are Maps of Financial Variables just Population Maps? • yes, unless you look at per capita

[https://xkcd.com/1138]

 empirical study tasks -finding critical points, identifying their

Vector fields

-identifying what type of critical point

[Surprise! Bayesian Weighting for De-Biasing Thematic Maps. Correll and Heer. Proc InfoVis 2016]

Idiom: Bayesian surprise maps

use models of expectations to highlight surprising values

https://medium.com/@uwdata/surprise-maps-showing-the-unexpected-e92b67398865 https://idl.cs.washington.edu/papers/surprise-maps

confounds (population) and variance (sparsity)

- is at a specific location -predicting where a particle starting at
- a specified point will end up (advection)

Ch 8: Arrange Spatial Data

Arrange networks and trees Idiom: force-directed placement

- visual encoding
 - -link connection marks, node point marks
- considerations
- -spatial position: no meaning directly encoded
- left free to minimize crossings
- -proximity semantics?
- · sometimes meaningful
- · sometimes arbitrary, artifact of layout algorithm
- tension with length -long edges more visually salient than short

- -explore topology; locate paths, clusters
- scalability
 - -node/edge density E < 4N

Paper: ABySS-Explorer

rejected option: scale edge lengths by sequence lengths

-oscillation shows fixed number, shapes distinguishable

- orientation with max amplitude asymmetric wrt start

-min amplitude at connections so edges visible

· aligned with empirical guidance for tapered edges

-short contigs are important sources of ambiguity, would be hard to distinguish

Fig 5. ABySS-Explorer: visualizing genome sequence assemblies. Nielsen, Jackman, Birol, Jones. TVCG 15(6):881-8, 2009 (Proc. InfoVis 2009). 3

-task guidance: only low-res judgements needed, relatively long or short

ABySS-Explorer: Design study

- reconstructing genome with ABySS algorithm (Assembly By Short Sequences)
- domain task
- -go from short subsequences to **contigs**, long
- contiguous sequences
- extensive automatic support, but still human in the loop for visual inspection and manual editing
- -ambiguities, like repetitions longer than read length
- · data, domain:abstract
- -millions of reads of 25-100 nucleotides (nt): strings
- -read coverage, proxy for quality: quant attrib
- -read pairing distances, proxy for size distribution: quant

Fig 2.ABySS-Explorer: visualizing genome sequence assemblies. Nielsen, Jackman, Birol, Jones.TVCG 15(6):881-8, 2009 (Proc. InfoVis 2009).

Read pairs: encoding

- data:
- distance estimate
- -orientation
- encoding:
- -dashed line (shape channel for line mark) • implying inferred vs observed sequences
- -color for both dashed line and contig leaf
- -[same length as for contigs]
- -rejected initial option: line color alone • too ambiguous
- -interaction to fully resolve remaining ambiguity
- or color by unambiguous paths in grey

Fig 6. ABySS-Explorer: visualizing genome sequence assemblies. Nielsen, Jackman, Birol, Jones. TVCG 15(6):881-8, 2009 (Proc. InfoVis 2009). 39

Contigs: abstraction as derived network data

- derived data: de Bruijn graph/network
- -directed network, compact representation of sequence overlaps
- -edge: overlap of k I nt between two contigs
- -good for computing, bad for reasoning about sequence space
- derived data: dual de Bruijn graph
- -node: points of contig overlap
- -edge: contig
- -better match for arrow diagrams used in hand drawn sketches
- base layout: force-directed

Fig 3.ABySS-Explorer: visualizing genome sequence assemblies. Nielsen, Jackman, Birol, Jones.TVCG 15(6):881-8, 2009 (Proc. InfoVis 2009).

DNA as double stranded: idiom for encoding & interaction

- rejected option: 2 nodes per contig
- -excess clutter if one for each direction
- -choice at data abstraction level
- encoding & interaction idiom: polar node
- -encoding: upper vs lower attachment point
- · redundant with arc direction
- large-scale visibility, without need to zoom · arbitrary but consistent
- -interaction: click to reverse direction
- switches polarity of vertex connections changes sign of label

Fig 4. ABySS-Explorer: visualizing genome sequence assemblies. Nielsen, Jackman, Birol, Jones.TVCG 15(6):881-8, 2009 (Proc. InfoVis 2009)

Displaying meta-data

- · reserve color for additional attributes
- ex: color to compare reference human to lymphoma genome
- -inconsistencies visible as interconnections between different colors
- -inversion breakpoint visible
- -interaction to check if error in metadata from experiments vs assembly
- read pair info supports metadata - speedup claim vs prev work

Fig 10. ABySS-Explorer: visualizing genome sequence assemblies. Nielsen, Jackman, Birol, Jones. TVCG 15(6):881-8, 2009 (Proc. InfoVis 2009). 40

Contig coverage: encoding

- rejected options: luminance/lightness
- -not distinguishable given denseness variation from wave shapes
- -also problematic with desire for separable color/hue encoding
- chosen: line thickness
- -not distinguishable for extremely long contigs
- -can address by adjusting oscillation frequency to suitable size

Assembly examples

rejected options:

- half-lines

· ideal: single large contig

Contig length: encoding

encoding idiom: wave pattern

• rejected initial option: max in middle

- color (keep for other attribute)

- curvature (used for polar nodes)

- overview/gist: many small contigs remain
- interaction to resolve
- -integrate paired read highlighting on top of contig paths structure

Reading for next time

- VAD Chapter II. Manipulate View
- VAD Chapter 12. Facet into Multiple Views

12K nt

Visualization of Parameter Space for Image Analysis. Pretorius, Ruddle, Bray, Carpenter. TVCG 12(17):2402-2411 2011 (Proc. InfoVis 2011). - [type: design study]

Fig 7/9. ABySS-Explorer: visualizing genome sequence assemblies. Nielsen, Jackman, Birol, Jones.TVCG 15(6):881-8, 2009 (Proc. InfoVis 2009).