

van den Elzen, van Wijk, IEEE TVCG 20(12): 2014 (Proc. InfoVis 2014).]

[ICLIC: Interactive categorization of large image collections. van der Corput and van Wijk. Proc. PacificVis 2016.]

[http://en.wikipedia.org/wiki/File:GaussianScatterPCA.png]

VisDB Results	VisDB Results	VisDB Analysis	Hierarchical Clustering Explorer
• partition into many small regions: dimensions grouped together	• partition into small number of views -inspect each attribute	System VisDB What: Data Table (database) with k attributes; query returning table subset (database query). What: Derived k + 1 quantitative attributes provide regime or original item: query relevance for the k original attributes plus overall relevance. Why: Tasks Characterize distribution within attribute, find groups of similar values within attribute, find outliers within attribute, find outliers within attribute, find correlation between attributes, find similar items. How: Encode Dense, space-filling; area marks in spiral layout; colormap: categorical hues and ordered luminance. How: Facet Layout 1: partition by attribute into per-attribute views, small multiples. Layout 2: partition by items into per-item glyphs. How: Reduce Filtering Attributes: one dozen. Total items: several million. Visible items (using multiple views, in total): one million. Visible items (using glyphs): 100 000	 heatmap, dendrogram multiple views <i>Interactively Exploring Hierarchical Clustering Results. Seo and Shneiderman, IEEE Computer 35(7):</i>
(VisDB: Database Exploration using Multidimensional Visualization, Keim and Kriegel, IEEE CockA, 1994] ● HCE • rank by feature idea • Database • Database • Provide the structure in the structure for the structure exploration of multidimensional data. See and Shneiderman. Information Visualization 4(2): 96-113 (2003)	Image: Within the problem is the pr	System Hierarchical Clustering Explorer (HCE) What: Data Multidimensional table: two categorical key attributes (genes, conditions); one quantitative value attribute (gene activity level in condition). What: Derived What: or clustering of table rows and columns (for cluster heatmap); quantitative derived attribute combination. Why: Tasks Find correlation between attributes; find clustering, outlers, trends within leme. Why: Tasks Find correlation between attributes; find clusters, aps, outlers, trends within leme. How: Encode Dynamic filtering; dynamic aggregation. How: Reduce Dynamic filtering; dynamic aggregation. How: Facet Multidorm with linked highlighting and shared spatial position; overview-detail with selection in overvi	80-86 (2002)] ⁵² InterRing original hierarchy blue subtree expanded Tan subtree expanded [InterRing:An Interactive Tool for Visually Navigating and Manipulating Hierarchical Structures. Yang, Ward, Rundensteiner. Proc. InfoVis 2002, p 77-84.]
System AnalysisSystem InterRingMata: DataMy: TasksSelection, rollup/drilldown, hierarchy editing.How: EncodeAnalia, space-filling layout. Color by tree structionHow: EncodeLinked coloring and highlighting.How: ReduceEncodeCaleDodes: Intere: dozens.	PivotGraph • derived rollup network	PivotGraph	biotection PivotGraph Minat: Data Network. What: Derived Derived network of aggregate nodes and links Why: Tasks Cross-attribute comparison of node groups. How: Encode Nodes linked with connection marks, size. How: Manipulate Change: animated transitions. How: Reduce Aggregation, filtering. Scale Nodes/links in original network: unlimited. Roll- up attributes: up attributes: 2. Levels per roll-up attribute: several, up to one dozen.
<section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></section-header></section-header>	<section-header></section-header>	<section-header> Using space: Constellation edge crossings cannot easily minimize instances, since position constrained by spatial encoding. instead: minimize perceptual impact views: superimposed layers dynamic foreground/background layers on mouseover, using color four kinds of constellations definition, path, link type, word not just 1-hop neighbors https://youtu.be/7sjC3QVpSkQ Interactive Ysue/Ization of Large Grophs and Networks. Munzner: Ph.D. Dissertation, Samford University, June 2000. </section-header>	System Constellation What: Data Three-level network of paths, subgraphs (definitions), and nodes (word senses). Why: Tasks Discover/verify: browse and locate types of paths, identify and compare. How: Encode Containment and connection link marks, horizontal spatial position for plausibility attribute, vertical spatial position for order within path, color links by type. How: Manipulate Navigate: semantic zooming. Change: Animated transitions. How: Reduce Superimpose dynamic layers. Scale Paths: 10–50. Subgraphs: 1–30 per path. Nodes: several thousand.

What-Why-How Analysis

this approach is not the only way to analyze visualizations!
 -one specific framework intended to help you think
 -other frameworks support different ways of thinking

 following: one interesting example

Algebraic Process for Visualization Design

which mathematical structures in data are preserved and reflected in vis

 negation, permutation, symmetry, invariance

Unambiguous Data Depiction Visual-Data Correspondence IRL OGBR $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ b1 $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ cO 0 5 10 15 20 % in senior mgmt. men \circ \circ \circ b0 c0 AUS BE ES^{*} (a) Employment rates (b) Tensor Glyphs (c) Directed Graph [Fig 1. An Algebraic Process for Visualization Design. Carlos Scheidegger and Gordon Kindlmann. IEEE TVCG (Proc. InfoVis 2014), 20(12):2181-2190.]

Algebraic process:Vocabulary

- **invariance** violation: single dataset, many visualizations -hallucinator
- **unambiguity** violation: many datasets, same vis
- -data change invisible to viewer
- confuser
- correspondence violation:
- -can't see change of data in vis
- jumbler
- -salient change in vis not due to significant change in data

 misleader
- -match mathematical structure in data with visual perception
- we can X the data; can we Y the image?
- -are important data changes well-matched with obvious visual changes?

25? 67