The What-If Tool (WIT) Interactive Probing of Machine Learning Models

$\bullet \bullet \bullet$

James Wexler, Mahima Pushkarna, Tolga Bolukbasi, Martin Wattenberg, Fernanda Viegas, and Jimbo Wilson

Presented on Nov 19, by Patrick Huber

Problem & Objective

Problem:

- Machine Learning models (e.g. deep learning) are "black-boxes"
- Responses of models to different inputs cannot be easily foreseen
- Big topic in AI: **Explainability**

Objective:

- Gain understanding of a model's capabilities
 - when does it perform well/poorly
 - How is a change in the input reflected in the output (diversity)

Solution:

• Interactive visual "what-if" exploration

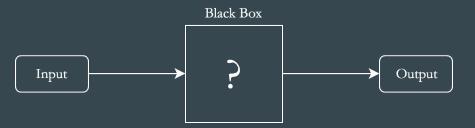
Model Understanding Frameworks

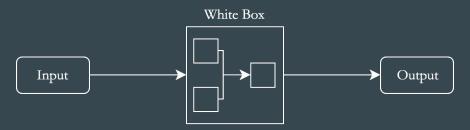
Black-Box:

- Does not rely on internals
- Probing depending on in- and outputs
- General used in many applications
- WIT

White-Box:

- Illuminates internal workings
- Specific for a model
- Often not applicable





Why? - Initial Analysis

Proof-of-concept

• Evaluate technical suitability and compatibility of InfoVis solution

Workshops

- 2 usability studies at different scales and with different user-groups
- Application builds on insights from usability studies
- Authors derive 5 distinct user needs

Why? - User Needs

Need 1: Test multiple hypotheses with minimal code

- Interact with trained model through graphical interface (no code)
- Comprehend relationships between data and models

Need 2: Use visualizations as a medium for model understanding

- Generate explanations for model behavior
- Problem: Visual complexity, hard to find meaningful insights
- Solution: Provide multiple, complementary visualizations

Why? - User Needs

Need 3: Test hypotheticals without having access to the inner workings of a model

- Treat models as black boxes
- Generate explanations for end-to-end model behavior
- Answer questions like
 - "How would increasing the value of X affect a model's prediction scores?"
 - "What would need to change in the data point for a different outcome?"
- No access to model internals
- Explanations generated remain model-agnostic
- Increases flexibility

Why? - User Needs

Need 4: Conduct exploratory intersectional analysis of model performance

- Users often interested in subsets of data on which models perform unexpectedly
- False positive and false negative rates can be wildly different
- Negative real-world consequences

Need 5: Evaluate potential performance improvements for multiple models

- Track impact of changes in model hyperparameters (e.g. changing a threshold)
- Interactively debug model performance by testing strategies

Build using Tensorboard, a code-free and installation-free visualization framework

- No custom coding (N1)
- Help developers and practitioners to understand ML systems
- Covers many standpoints (Inputs / single data points / models)
- Basic layout: 2 main panels \rightarrow control panel & visualization panel

https://pair-code.github.io/what-if-tool/iris.html

Data Machine Learning Model

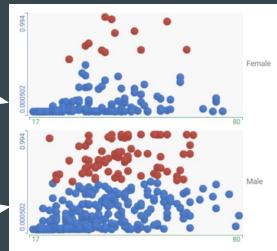
What-If Tool

1-D	2-8	22.	\$ ⁵	87-18	8.9	 8.6	8-1	5 74
: :::::	: ::::			in:				

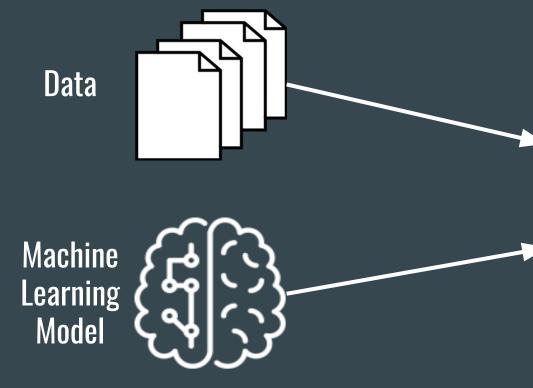
(b) Histogram of age, colored by classification

Data Machine Learning Model

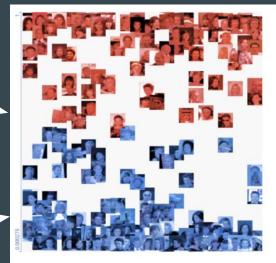
What-If Tool



(d) Small multiples by sex. Each scatterplot shows age vs positive classification score, colored by classification



What-If Tool



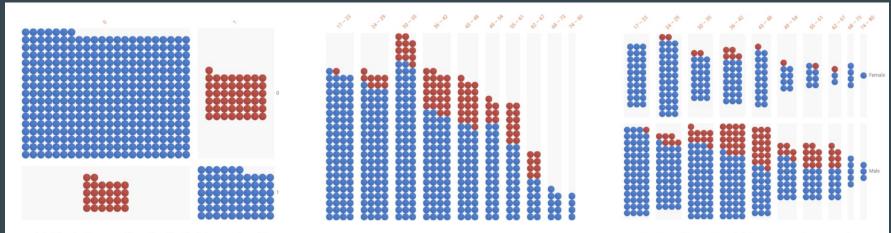
(f) Using images as thumbnails for image datasets

How? - Tailoring 3 Tasks to Satisfy User Needs

- Closely related to user needs
- Example of the UCI Census dataset
 - Solve prediction task
 - Classify individuals as high or low income
 - Train 2 models
 - Multi-layer neural network
 - Simple linear classifier

How? - Task 1: Exploring the Data

Customizable Analysis



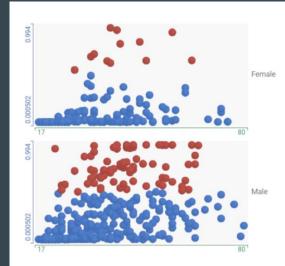
(a) Confusion matrix of a single binary classification model, colored by prediction correctness

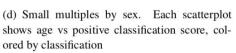
(b) Histogram of age, colored by classification

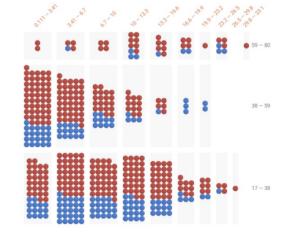
(c) Two-dimensional histogram of age and sex, colored by classification

How? - Task 1: Exploring the Data

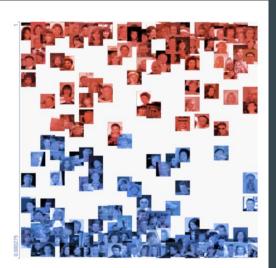
Customizable Analysis







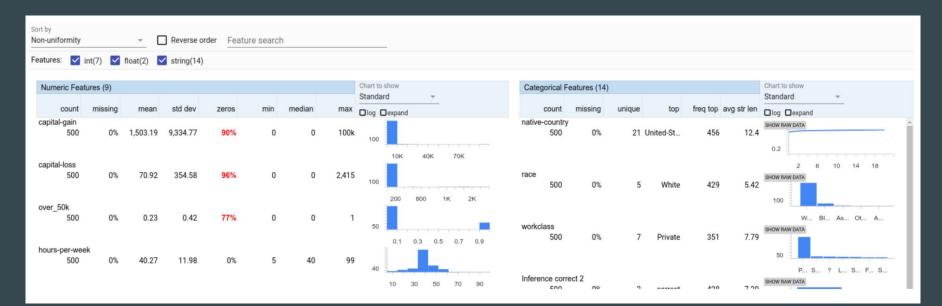
(e) Histograms of performance in a regression model that predicts age, faceted into 3 age buckets



(f) Using images as thumbnails for image datasets

How? - Task 1: Exploring the Data

Feature Analysis: Dataset Summary



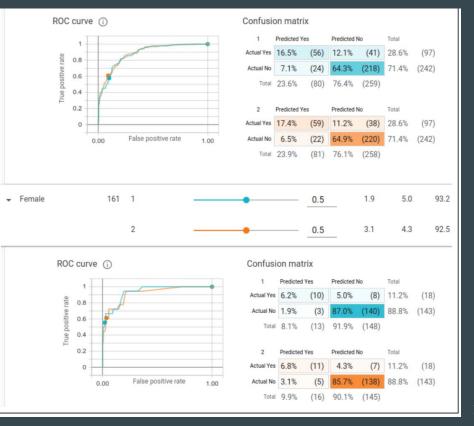
How? - Task 2: Investigating What-If Hypothesis

- Generate & test hypotheses about how model treats data
 - Edit data points
 - Identify counterfactuals
 - Observe partial dependencies
- Apply carefully chosen input modifications (edit, add or delete feature values)
- Result of changing income from $3,000 \rightarrow 20,000$ (edit data point):

Run	Model	Label	Score	Delta
2	1	1 (>50k)	0.991	1.655581
2	1	0 (<=50k)	(B) 0.008	J -0.641580
2	2	1 (>50k)	0.894	140262
2	2	0 (<=50k)	0.067	J -0.156162
1	1	0 (<=50k)	0.650	
1	1	1 (>50k)	0.336	

How? - Task 3: Evaluate Performance and Fairness

- Slice data by feature values
- Perform measures on the subset
 - ROC
 - Confusion Matrix
 - Cost Ratio
- Measures can also be applied to Compare models



Data Scaling

- Assumption: Standard laptop
- Computational restrictions:
 - Tabular Data:
 - # Features: 10-100
 - # Datapoints: ~100,000
 - Image Data:
 - Pixel dimensions: 78x64
 - # Datapoints: 2,000
- Comment:
 - As seen before, occlusion already a problem with less data

Evaluation

- 3 case studies executed
 - 2 studies in a large software company
 - 1 study in a university environment
- Showing the potential of WIT to:
 - Uncover bugs
 - Explore the data
 - Find partial dependencies

Analysis Summary

- What data:
 - User data & machine learning models
- What derived:
 - Inference of the model (on the data)
- What shown:
 - Dataset- and datapoint-level results of ML models
 - Giving a better understanding of the capabilities and possible adversarial attacks

Analysis Summary

- How executed:
 - 3 common tasks derived from user studies
- How shown:
 - Extension of a out-of-the-box visualization tool
- Why important:
 - Machine Learning models are black boxes
 - Making crucial decisions in the real world
 - Understanding is important

Strength and Weaknesses

Strengths:

- + Versatile tool
- + Many useful real-world applications
- + Greatly reducing workload compared to creating own visualizations

Weaknesses:

- Only easily compatible with Tensorflow (one deep-learning library)
- Occlusion is a problem, already with small datasets (150 data points, see example)
- Strict computational restriction (100,000 data points is not a lot)

Thank You

Questions?