Critical Reflections of Visualization Authoring Systems Arvind Satyanarayan, Bongshin Lee, Donghao Ren, Jeffrey Heer, John

Stasko, John R Thompson, Matthew Brehmer, and Zhicheng Liu

Presented by Nico Ritschel, November 26th 2019

Two Contributions

- 1. Evaluation of 3 Visualization Authoring Systems
 - 2. Critical Reflections methodology in general

Visualization Authoring Systems

en can it be

During development

Learnability

Expressivity

Critical Reflections:

Programming

Visualization Authoring Systems

Drawing

During development

Authoring

A Novel Evaluation Approach for Vis Tools

Critical Reflections:

Critical Reflections:

Design Gallery

Usability Study

User Adoption

Comparative Study

A Novel Evaluation Approach for Vis Tools

Design Gallery	√	X	X	During developmen

A Novel Evaluation Approach for Vis Tools

Critical Reflections: A Novel Evaluation Approach for Vis Tools

Usability Study

aluation Method	Can evaluate	Can evaluate	Can compare tool to	Wi

				5
Critical R	eflections	5:		
A Novel I	Evaluation	n Approa	ch for Vis To	ols
Evaluation Method	Can evaluate expressiveness?	Can evaluate learnability?	Can compare tool to alternatives?	When can it be applied?

Design Gallery During development **Usability Study** During development Comparative Study During development User Adoption Long after release Critical Reflection

Marks

During development

During development

During development

Long after release

	Lyra	Data Illustrator	Charticulator
What?	Predefined marks	Custom vector shapes	Predefined marks
How?	Drag and drop; Composition on main canvas	Vector-based drawing on canvas; Composition on main canvas	Drag and drop or drawing; Composition in glyph editor
Pros/ Cons	Simple, direct user interaction Needs arbitrary default values "Messy" mark composition	+ Highest expressivity - Stateful tool selection - "Messy" mark composition	+ Users choose preferred method + Easiest mark composition - Needs separate glyph canvas

Critical Reflections: A Novel Evaluation Approach for Vis Tools

Evaluation Method	Can evaluate expressiveness?	Can evaluate learnability?	Can compare tool to alternatives?	When can it be applied?
Design Gallery	√	Х	Х	During development
Usability Study	✓	✓	X	During development
Comparative Study	✓	✓	✓	During development

Usability Study Comparative Study

General Idea:

Critical Reflections:

· Authors of different tools discuss their work and reflect on their design choices

A Novel Evaluation Approach for Vis Tools

Data Binding

+ data points per glyph;

one glyph for all data,

then grouping by attribute;

Drop zones are very direct

No filtering of categorical and

Grouping feature unintuitive

Long drags/small drop zones

inding via "drop zones"

quantitative data

ttributes map to visual channels

- · Weekly 1-2-hour video conference for 3 months
- · Focus on differences in handling marks, data binding, scales, axes, legends and layout

Data Illustrato

attributes map to visual channels

1+ data points per glyph;

One glyph for all data, then

+ Filtering of categorical and

"Partition and repeat" allow

uniform nesting operations

quantitative data

Menus are less direct

binding via menus

Visualization Authoring Systems in this Paper

Design Gallery

Data Illustrator Adobe Systems/Georgia Tech, 2018

Charticulator

Microsoft Research, 2018

Charticulator

attributes map to visual channel

binding via "drop zones" or menu

Filtering of categorical and

quantitative data

Limited nesting depth

1+ data points per glyph;

One glyph for each point,

then grouping by attribute;

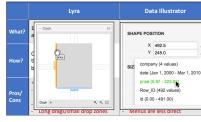
Charticulator

attributes map to visual channels

binding via "drop zones" or menus

Users choose preferred method

Filtering of categorical and


Limited nesting depth

1+ data points per glyph:

One glyph for each point,

"partition and repeat" by attribute; then grouping by attribute;

Data Binding

in IEEE Transactions on Visualization and Computer Graphics, vol. 26, no. 1, pp. 461-471, 2020, doi: 10.1109/TVCG.2019.293428

Data Binding

	Lyra	Data Illustrator	Charticulator	
What?	1+ data points per glyph; attributes map to visual channels	1+ data points per glyph; attributes map to visual channels	1+ data points per glyph; attributes map to visual channels	
How?	One glyph for all data, then grouping by attribute; binding via "drop zones"	One glyph for all data, then "partition and repeat" by attribute; binding via menus	One glyph for each point, then grouping by attribute; binding via "drop zones" or menus	
Pros/ Cons	Drop zones are very direct No filtering of categorical and quantitative data Grouping feature unintuitive Long drags/small drop zones	+ Filtering of categorical and quantitative data + "Partition and repeat" allow uniform nesting operations - Menus are less direct	Users choose preferred method Filtering of categorical and quantitative data Limited nesting depth	

Scales, Axes and Legends

	Lyra	Data Illustrator	Charticulator	
What?	Full customization	Based on one or more attributes	Based on one attribute	
How?	Scales/axes/legends generated manually or from data bindings and can be freely edited	Scales/axes/legends generated from data bindings; scales can be reused or merged;	Scales/axes generated from data bindings; scales can be reused;	
Pros/ Cons	Maximum design freedom Complex, indirect UI and overwhelming set of choices	+ Simple UI + Some flexibility for experts - Introduces hidden scale dependencies	+ Simplest UI - Lowest design freedom	

Shared Assumptions of all Tools

- Familiarity with similar design tools (e.g. Adobe Illustrator)
- Concrete, mature design ideas in users' minds
- None of the tools support non-linear design iteration
- Cleaned, pre-processed data set
- Lyra supports some data wrangling, but limited and not easy to learn

Opinion on the Paper

- +Promising new evaluation approach
- + Analysis refers to related work on HCI and cognition
- +Interesting selection of highly related high-profile tools
- + Gathering so many industry people is an achievement in itself
- Non-empirical evaluation
- Actual impact on usability/learnability unclear
- Does not consider time-line of development
- Missed chance to discuss design inspirations and motivations

Questions?

Lyra	а			
Univ	ersity	of Washing	ton, 201	4
		EVA:		-

Charticulator

Microsoft Research, 2018

Source of Screenshots: Fig. 1, "Critical Reflections on Visualization Authoring Systems," A. Satyanarayan et al., in IEEE Transactions on Visualization and Computer Graphics, vol. 26, no. 1, pp. 461-471, 2020. doi: 10.1109/TVCG.2019.2934281