
Visualizing a Moving Target: A Design Study on Task
Parallel Programs in the Presence of Evolving Data
and Concerns

Katy Williams et al., Arizona University

CSPC 547 Information Visualization 2019, Michael Kim

Visualizing a Moving Target: A Design Study on Task
Parallel Programs in the Presence of Evolving Data
and Concerns

Phylanx
An Asynchronous Distributed Array Computing Toolkit

Visualizing a Moving Target: A Design Study on Task
Parallel Programs in the Presence of Evolving Data
and Concerns

Design study on in-flight development project
Phylanx

My Motivation

An experience paper

Data is keep changing

Why this paper? What to look for?

Graph Visualization

Evolving Data and Concerns

How they deal with it

How they evaluate their system

Motivation : Chicken & Egg

Data vs. Analysis?
Analysis needed to decide what data to collect, but no data presented by domain experts

- Lack of data availability and the domain users’ needs
- Whether domain experts will use the visualization for will persist long enough to complete the study.

Motivation: Task Parallel Programs

Arizona University?
*Ease of access to a development environment

High Complexity!

“Visualization Aid Needed for Debugging & Tuning”

Correctness of Source Code
Parallel Libraries
The Input
Hardware Cluster
Policy
Asynchronous

…

They want to accept the challenge not avoiding the pitfalls

Why they choose Task Parallel Programs?

Background: Phylanx

A platform … for computations on distributed arrays for applied statistics on
commodity cloud systems”

The system will optimize execution and data layout from of a user provided
expression graph.

Python Code
HPX

(C++ Async tasking)

Detail..

Background: Expression Graph

transx * (pred - y - x)

Node: Task / Primitive
Edge : Dependency

Design Methodology

* “Design Study Methodology: Reflections from the Trenches and the Stacks”

Pitfalls

PF-4 : No Real Data Available
PF-10 : No Real/Important/Recurring Task.
PF-20 : Premature Design Commitment

Iterative process

- “Communication, shared interest in the data collection problem
- The identification of key recurring abstract structures

Cast stage: Observed refinements, where deployments and conversations with domain
experts exposed deeper insights into the various roles that they play in practice.

Methodology: Winnowing Pitfall

Runtime

Performance
Analysis

Visualization

HPX, Phylanx Libraries

Aid Performance Analysis,
And Debugging

Performance Data,
Regression Tests

Winnowing Pitfall

PF-4: No Real Data Available (Yet). During the project, the
structure of the data and the format of the data have been
evolving. Other potential sources of data are not yet
instrumented.

PF-10: No Real/Important/Recurring Task. The fact that the
data is in flux means tasks involving that data are also in flux.
Furthermore, as Phylanx is developing rapidly, the concerns
of the team members change over time, affecting their
higher-level goals.

Methodology: Example Pitfall Solution

“Communication”

1) Identification and availability of meaningful preliminary data.

2) Strong interpersonal relationships.

3) Overarching goal of the project did not change.

4) Visualization considered a deliverable by entire project.

- Weekly report, “The incorporation of visualization as a project-wide

outcome underscores the continuing approval and enthusiasm

communicated by project gatekeepers”

- Through the present, we created 152 note files with a mean 2800

characters per file.

Task Abstraction: Goal-Task lattice-1

Tasks were derived from above: “Goal-Task lattice”

U1 Program Comprehension: What happens during program execution “Mental Model”

U2 Performance Analysis: Understanding and improving the performance of a given application

U3 Communication: Create figures to help explain their own research in publications.

G1 Overview of Execution: Gaining a graph overview (T1) + Following dependencies (T2) + Finding
substructures (T3)
G2 Relate to Code: Finding a subset of nodes (T4)
G3 Understand Timing Information: Finding a subset of nodes (T4) + Analyzing attribute data of
those nodes (T5) + Following dependencies (T2 for Hot Paths) + Find Sub-structures (T3 for timing
anomalies) + comparing attribute data (T6 for Comparison)

…

Task Abstraction: Goal-Task lattice-2 Visualization Design: Atria

Collapsed Subtree

Elided Link

Time,
Execution Mode

Primitive Listed with
Execution time

Visualization Design: Atria

Comparison between two runs of the same application with different policies.
Pink-outlined nodes indicate a difference in execution mode between two runs.
The orange node ran slower after the policy change.

Evaluation: Case Study, Task based Evaluation

[Atria Case Study] : Usage pattern, feedback
- “He reported using the visualization on average once a week, more frequently
when actively debugging”
- “When explaining his workflow to us, R3 said “Also it’s that I want to be able to
visualize it [the algorithm], just seeing it implants it in my mind.” He explained that
he is a visual person and Atria makes it easier to think about the problem

-7 People (R4-R10) participated with distinct profile (~ R10 no prior experience)
-Case Study, Task abstraction based evaluation

[Task based evaluation] : Time takes, what difficulties and questions they had
L1: Find a primitive that takes a lot of time. (G3)
How long does it take without its children? With? (G3)
L2: Find a primitive that is executed synchronously (G4)
L3: Find a primitive that is executed asynchronously (G4)
L4: Find a primitive that is repeated in the code (G1)
C1: Which run was slower? (G3),
*Why might it have been slower? (G1, G2, G3, G4)
C2: Find a primitive that changed execution mode. (G4) Explain the change. (G4)
=> ”complete the L1 tasks within seconds”
=> R7 suggested that since the store took a lot of time, the program might be memory-intensive

Evaluation: Interview

[Interview] : Based on task evaluation
“Regarding utility, two participants said they didn’t know whether the features would be helpful
or not (R6, R9).”

“Suggestions for improvement included differentiating primitive types (e.g., variables, functions,
control-flow) (R6, R7)”

“Access to timing data (P4,P5, P7), the linked code view (P4, P5, P8), the comparison view (P4,

P5, P9), and links between dependencies (P5, P7, P8)”

Lessons Learned

1) For “moving target”, seeking to satisfy rather optimize it
- PF-10, No Real/Important/Recurring Task
- PF-20, Premature Design Commitment

“Our rapid deployments often contained UI bugs”

2) Task analysis and long-term corpus of notes help
clamp down on reactivity

3) Rapid changes combined with multiple deployment targets incur
a maintenance burden

4) Both the visualization and the design study process aided our
collaborators in accomplishing their goals and helped establish a
culture of data review

THANK YOU

