Ch 11/12: Manipulate, Facet Paper: Paramorama Tamara Munzner Department of Computer Science University of British Columbia CPSC 547, Information Visualization Week 6: 15 Oct 2019	 Fiming today presentation topics discussion catchup: color second half discussion catchup: spatial, networks, abyss-explorer, geneaology discussion for today's reading: manipulate, facet, paramorama next week no class! Oct 29 readings: reduce, embed, TopoFisheye paper more on presentations & project proposals guest lectures TBA 	Presentations & Projects
Presentation topics: Pick one or two • data types • domains - comparison & similarity - networks - machine learning - communication, - trees - genomics - communication, - geographic data - medicine - - high-dimensional data - sports - techniques - text data - digital humanities - dimensionality reduction - temporal data - sensemaking - clustering - space & time - (other, if not too narrow) - clustering - sequences & events - perception - multiple view - spatial fields - uncertainty - analysis process - models (ML or other) - personal data - personal data	 Project Groups finalize by this Fri Oct 25 at latest helpful to post with current status reports, even before that! who's still looking, who's resolved definitely post to confirm when finalized 	 Project Meetings each project needs signoff: at least one meeting -I've already signed off for some projects in pre-pitch meetings - in some cases one meeting will be enough and I'll sign off then - in some cases followup meeting will be needed! meetings cutoff is 6pm Fri Nov I - check my potential availability calendar (updated frequently) - send email with proposed times - don't wait until the last minute, I'm heavily booked - no meetings next week (Mon Oct 21 - Fri Oct 25)
 Paramorama: Visualization of Parameter Space for Image Analysis requirements RI separate out specification of input params and inspection of output from slow computations (actual image processing) R2 enable param optimization. three classes of params, focus on hard ones: aliases: input once, never change, minimal effort nominal params: pick from list, never change, minimal effort continuous params: essential to find right thresholds; difficult & time consuming only 3-7 out of the 5-20 total params need to be carefully sampled R3 analyze outcomes for reference image wrt input params: find good vs bad strategy offline batch processing to compute, then interactive exploration of output user selects module, subset of continuous params, range, and target # samples [Visualization of Parameter Space for Image Analysis. Pretorius, Ruddle, Broy, Carpenter.TVCG 12(17):2402-2411 2011 (Proc. InfoVis 2011).] 	Data • data: samples & output - CellProfiler full pipeline has 150-200 params - 10-20 modules w/ 5-20 params each • derived data: table - rows are unique combos of sampled param values - columns are user-selected params • derived data: hierarchical clustering - root contains all tuples - each level represents user-selected parameter - path from the root to each leaf represents unique combination of sampled parameter - reorder parameters to change leaf order • instead of reorder columns in table	 Overview cluster hierarchy of sampled params primary navigation control user selects areas, linked highlighting in refinement view visual encoding spatial position: rectilinear node-link view considerations: compactness, linear ordering, skinny aspect ratio rejected: icicle plots & tree maps vs node-link rejected: radial vs rectilinear vis enc: color perceptually ordered, colourblind-safe luminance high, saturation low
 Interaction multiple views w/ 3 scales overview mid-level refinement detail view for selected single image (top right) shortcut: next unselected subtree linked highlighting selection blue focus red selection blue focus red selection blue focus red tagging: good (green) vs bad (magenta) filtering: range or tags detail text view on control panel not popups <i>IFig 4.Visualization of Parameter Space for Image Analysis. Pretorius, Ruddle, Bray, Carpenter, TVCG 12(17):2402-2411 2011</i> 	<text></text>	Case study: expert user • quality: higher quality result from considering over 3K images

panel not popups [Fig 4.Visualization of Parameter Space for Image Analysis. Pretorius, Ruddle, Bray, Carpenter. TVCG 12(17):2402-2411 2011 (Proc. InfoVis 2011).]

[Fig 6. Visualization of Parameter Space for Image Analysis. Pretorius, Ruddle, Bray, Carpenter. TVCG 12(17):2402-2411 2011 (Proc. InfoVis 2011).]

[Fig 7.Visualization of Parameter Space for Image Analysis. Pretorius, Ruddle, Bray, Carpenter. TVCG 12(17):2402-2411 2011 (Proc. InfoVis 2011).]

lands first

EuroVis 2008) 27:3 (2008), 1055-1062.]

Visualization (InfoVis), pp. 159–166, 2004.]

stem: HIVE	Partitioning: Recursive subdivision	System: HIVE
Hat Ter Reduring Smill DerHat Ter Rauering Smill DerHat Ter Newham Smill DerHat Ter Barking Smill DerHat Ter Smill D	 switch order of splits -type then neighborhood switch color -by price variation type patterns -within specific type, which neighborhoods inconsistent 	ISemi Bet
71	 Static visual layering foreground layer: roads hue, size distinguishing main from minor high luminance contrast from background background layer: regions desaturated colors for water, parks, land areas user can selectively focus attention "get it right in black and white" check luminance contrast with greyscale view 	Image: constrained by the constrai
veight)	Reading for next time • VAD Ch 13: Reduce • VAD Ch 14: Embed • VAD Ch 15: Case Studies • Paper: Topological Fisheye Views for Visualizing I - paper type: algorithm	Large Graphs