Interaction

– multiple views in 3 modes
 – overview
 – detail view for selected single-image (full-right)
 – thumbnail view on selected single-image (left-right)
– data sources
– linked highlighting
– selection tools
– focused region
– zooming
– shifting range or size
– detail view on selected spatial extent

Case study: novice user

– speed: 10 min to find contiguous part of parameter space that yields high-quality results

Case study: expert user

– quality: higher quality result from considering over 3K images

Presentation topic choices

– presentation topic choices due next Friday (Oct 25) at 5pm
 – post your choice to discussion thread on Canvas 1 or 2 topic choices
 – all of us have more than one person with same choice
 – timing let me know if a specific day is bad for you ("even day")

– from this set Nov 5, 12, 19, Dec 4
 – I’ll assign days soon
 – I’ll assign papers (from this year’s VIS conf) at least 1 week before your presentation

– more on presentation expectations next time (Oct 29)

Ch 10: Manipulate

Data

– data: samples & output
 – CellProfiler full pipeline has 150-200 params
 – 10-20 modules w/ 5-20 params each
– derived data: table
 – rows are unique combos of sampled parameter values
 – columns = user-selected parameters
– derived data: hierarchical clustering
 – root of tree visualizes reference image w/ input parameters
 – found-good vs bad
– strategy
 – offline batch processing to compute, then interactive exploration of output

Overview

– cluster hierarchy of sampled params
– primary navigation control
 – user selects areas, linked highlighting in refinement view
 – visual encoding spatial position: rectilinear node-link view
– data: samples & output
– derived data: table
– derived data: hierarchical clustering
– root of tree visualizes reference image w/ input parameters
– found-good vs bad
– strategy
 – offline batch processing to compute, then interactive exploration of output

Paper: Paramorama

Data

– data: samples & output
 – CellProfiler full pipeline has 150-200 params
 – 10-20 modules w/ 5-20 params each
– derived data: table
 – rows are unique combos of sampled parameter values
 – columns = user-selected parameters
– derived data: hierarchical clustering
 – root of tree visualizes reference image w/ input parameters
 – found-good vs bad
– strategy
 – offline batch processing to compute, then interactive exploration of output

Overview

– cluster hierarchy of sampled params
– primary navigation control
 – user selects areas, linked highlighting in refinement view
 – visual encoding spatial position: rectilinear node-link view
– data: samples & output
– derived data: table
– derived data: hierarchical clustering
– root of tree visualizes reference image w/ input parameters
– found-good vs bad
– strategy
 – offline batch processing to compute, then interactive exploration of output

Paper: Paramorama
Idiom: Re-encode
System: Tableau

Idiom: Change parameters
• widgets and controls
 – sliders, buttons, radio buttons, checkboxes, drop-down/comboboxes
 – links
 – clear affordances, self-documenting (with labels)
 – components
 – uses screen space
 – design choices
 – separated vs interlocked
 – controls & curves

Idiom: Change alignment
System: LineUp

Shiny example
• APGI genome browser
 – tooling: R/Shiny
 – interactivity
 – tooltip detail on demand on hover
 – expand/contract chromosomes
 – expand/contract control panes

Idiom: Animated transitions
• smooth interpolation from one state to another
 – alternative to jump cuts, supports item tracking
 – best case for animation
 – staging to reduce cognitive load
 – example: animated transitions in statistical data graphics

Idiom: Animated transitions - tree detail
• animated transition
 – network drilldown/zoom

Idiom: Animated transition - bar detail
• example: hierarchical bar chart
 – add detail during transition to new level of detail

Interaction technology
• what do you design for?
 – mouse & keyboard on desktop
 – touch interaction on mobile
 – small screens, no hover, just tap
 – gestures from video/sensor
 – argumentic reality vs move bombast
 – eye tracking

Selection
• selection basic operation for most interaction
 – design choices
 – how many selection types?
 – interaction modalities
 – click/hover (one/two click) vs hover (lightweight but not available on most touchscreens)
 – multiple click types (shift/click, option-click, ...)
 – proximity beyond click/hover (touching vs nearby to distant)
 – application semantics
 – adding vs selecting set vs replacing selection
 – easy selection too?
 – on touch vs selecting+click on background
 – primary vs secondary (e.g. sources/target nodes in network)
 – group membership (additive items, item groups)

Idiom: Change order/arrangement
• what: simple table
 – how data-driven reordering by selecting column
 – why: find extreme values, trends

Idiom: Reorder
System: DataStripes

Idiom: Idiom: Animated transitions
• smooth transition from one state to another
 – alternative to jump cuts, supports item tracking
 – best case for animation
 – staging to reduce cognitive load

Idiom: Change over time
• change any of the other choices
 – encoding itself
 – parameters
 – arrange: map, manipulate
 – aggregation level, what is filtered...
 – interaction entails change

Idiom: Idiom: Change parameters
• what: simple table
 – how data-driven reordering by selecting column
 – why: find extreme values, trends

Idiom: Idiom: Reorder
• what table with many attributes
 – how: data-driven reordering by selecting column
 – why: find correlations between attributes

Idiom: Idiom: Embed
Manipulate
Change View Over Time
Select
Navigate
Item Reduction
Zoom
Pan/Translate
Constrained
Geometric or Semantic
Attribute Reduction
Slice
Cut
Project

Navigate: Changing viewpoint/visibility
- change viewpoint
- changes which items are visible within view
- camera metaphor
- pan/translate/scroll
- move up/down/zoom

Navigate: Unconstrained vs constrained
- unconstrained navigation
- easy to implement for designer
- hard to control for user
- easy to overwhelm/underwhelm
- constrained navigation
- typically uses animated transitions
- trajectory automatically computed based on selection
- just click: selection ends up framed nicely in final viewport

Idiom: Animated transition + constrained navigation
- example: multilevel matrix views
- transition into containing mark causes aspect ratio (shape) change
- add detail during transition
- movie: http://www.win.tue.nl/vsl/home/fvham/matrix/Zoomin.avi
- movie: http://www.win.tue.nl/vsl/home/fvham/matrix/Pan.avi

Idiom: Scrollytelling
- how: navigate page by scrolling (panning down)
- pros:
 - familiar & intuitive, from standard web browsing
 - linear (only up & down) vs possible overhead of click-based interface choices
- cost:
 - full-screen mode may lack affordances
 - scroll/jumping: no direct access
 - unexpected behaviour
 - continuous control for discrete maps

Idiom: Highlighting
- interaction benefits
 - interaction pros
 - major advantage of computer-based vs paper-based visualization
 - people seem to be better at noticing changes
 - animated transitions provide excellent support
- interaction limitations
 - interaction has a time cost
 - sometimes minor, sometimes significant
 - degenerates to overview! may not interact as planned by designer
 - NYTimes logs show ~90% don't interact beyond scrollytelling - Aisch, 2016

Interaction benefits
- interaction pros
 - major advantage of computer-based vs paper-based visualization
 - flexible, powerful, intuitive
 - exploratory data analysis: change as you go during analysis process
 - direct input selecting offers different visual encoding support offers tasks
 - animated transitions provide excellent support
 - empirical evidence that animated transitions help people stay oriented

Interaction limitations
- interaction has a time cost
- sometimes minor, sometimes significant
- degenerates to overview! may not interact as planned by designer
- NYTimes logs show ~90% don't interact beyond scrollytelling - Aisch, 2016
Linked views
- unidirectional vs bidirectional linking

Linked views: Multidirectional linking

- Share Encoding: Same/Different
 - same highlighting
- Share Data: All/Subset/None
 - data: all shared
 - data: subset shared
- Share Navigation

Video: Visual Analysis of Historical Hotel Visitation Patterns

- Video: [YouTube](https://www.youtube.com/watch?v=86p7brwuz2g)

Complex linked multiform views

- System: Pathfinder

Why not animation?
- disparate frames and regions: comparison difficult
- vs contiguous frames
- vs small region
- vs coherent motion of group

Why not animation?
- System: EDV

Why not animation?
- System: Improvise

Why not animation?
- System: StratomeX

Why not animation?
- System: Pathfinder

Linked views

- **Overview-detail views**
 - System: Google Maps
 - encoding: same
 - data: subset shared
 - navigation: shared
 - unidirectional linking
 - differences
 - viewpoint
 - (page)
 - special case: birds-eye map

- **Overview-detail navigation**
 - System: Pathfinder

- **Overview-detail views**
 - System: Cerebral

- **Overview-detail views**
 - System: StratomeX

- **Overview-detail views**
 - System: Pathfinder

Linked Highlighting
- System: Linked highlighting
 - connected views: side by side views
 - linked to other encodings
Partition into views
- how to divide data between views
- split into regions by attributes
- encodes association between items
- uses spatial proximity
- order of splits has major implications
- for what patterns are visible
- no strict dividing line
- view big/detailed
- color: region in which usually encoded data is shown on the display
- glyph: small/large
- object: with internal structure that arises from multiple marks

Partitioning: List alignment
- single bar chart with grouped bars
- split by state into regions
- compare glyph within each region showing all ages
- compare easy within state, hard across states

Partitioning: Recursive subdivision
- split by neighborhood
- then by type
- then time
- years as rows
- months as columns
- color by price
- neighborhood patterns
- where it's expensive
- where you pay much more for detached type

System: HIVE
- switch order of splits
- type then neighborhood
- switch color
- by price variation
- type patterns
- within specific type, which neighborhood inconsistent

Superimpose layers
- layer: set of objects spread out over region
- each set is visually distinguishable group
- entire: whole view
- design choices
- how many layers, how to distinguish?
- encode with different, non-overlapping channels
- two layers achievable, three with careful design
- small static set, or dynamic from many possible?

Static visual layering
- foreground layer: roads
- hue, size distinguishing main from minor
- high luminance contrast from background
- background layer: regions
- desaturated colors for water, parks, land areas
- user can selectively focus attention
- "get it right in black and white"
- check luminance contrast with greyscale view

Dynamic visual layering
- interactive based on selection
- one-hop neighbour highlighting demos: click vs hover (lightweight)

Reading for next time
- VAD Ch 13: Reduce
- VAD Ch 14: Embed
- VAD Ch 15: Case Studies
- Paper: Topological Fisheye Views for Visualizing Large Graphs
 - paper type: algorithm

Superimposing limits
- few layers, but many lines
- up to a few dozen
- too many lines
- superimpose vs juxtapose: empirical study
- superimposed for local, multiple for global
- tasks
- local maximum, global slope, discrimination
- same screen space for all multiples vs single superimposed

Idiom: Trellis plots
- superimpose within same frame
- color code by year
- partitioning
- split by site, rows are wheat varieties
- main-effects ordering
- derive value of median for group, use to order
- order rows within view by median
- order views themselves by site median

Getting it right in black and white. Stone. 2010.

Partitioning into Side-by-Side Views
- how to divide data between views
- split into regions by attributes
- encodes association between items
- uses spatial proximity
- order of splits has major implications
- for what patterns are visible
- no strict dividing line
- view big/detailed
- color: region in which usually encoded data is shown on the display
- glyph: small/large
- object: with internal structure that arises from multiple marks

Dynamic visual layering
- interactive based on selection
- one-hop neighbour highlighting demos: click vs hover (lightweight)