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Event Sequences
• Time-ordered lists of discrete events 

• Analyze to discover patterns or rare event paths

• But… real-world datasets are large and complex:

• Volume and length of event sequences

• High-dimensional event data
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Grouping Events
• Typically, events are grouped in a pre-processing step 

• Requires foreknowledge and expertise about events  
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ICD-10 Coding System  
I50: Heart Failure 
   I50.2: Systolic Heart Failure
      I50.21: Acute Systolic Heart Failure 

   ……

Event type hierarchy

Grouping Events
• Can’t change event groups interactively

• May want multiple groupings — different levels of detail

• An ideal grouping may not exist — data- and task-
dependent
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Cadence 
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Dynamic Hierarchical Aggregation
1. Determining an optimal and adjustable level of grouping 

events based on an informativeness score
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Dynamic Hierarchical Aggregation
1. Determining an optimal and adjustable level of grouping 

events based on an informativeness score 

2. Supporting navigation of the event type hierarchy with a 
scatter-plus-focus visualization

3. Scenting to enable discovery of interesting event types 
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Informativeness Score
• Computed for each event type j in the event type hierarchy

• Measures the strength of the association between an 
event type and the outcome 

• If this patient had outcome v, did they also experience event 
type j? 

• Based on the chi-square test statistic
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Algorithm: Optimal Grouping Level
• Goal: Determine the most 

informative cut through the event 
type hierarchy

• Recursively traverse event type 
hierarchy

• Compare informativeness score 
of parent with each child
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Algorithm: Optimal Grouping Level
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Rj = # of children more informative than parent

total # of children

1. No more children (leaf)

2.             whereRj ≤ R 0 ≤ R ≤ 1

Add j to cut if: (else, recurse)

R controls level of aggregation (larger = more aggregation) 

Scatter-plus-Focus
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Scatter plot Focused dual-view

Scatter-plus-Focus
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• Challenges of overplotting!

• Grey hexes hint at density 
of all possible event types

• Marks are only event types 
part of informative cut 

• Control     with sliderR

Scatter-plus-Focus
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• Focuses on hierarchy of 
selected event type  

• X-axis is centred on 
correlation

• Y-axis: determined by 
optimization-based layout 
algorithm

Algorithm: Optimize Layout
• Cost function that balances two layout priorities: 

• Y-positions should be close to original in scatter view

• Marks should not overlap

• Two constraints:

• Optimized y-positions must be within y-axis scale

• Original y-position order of marks must be preserved
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Algorithm: Optimize Layout
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No changes to y-positions With algorithm
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Scenting
• Shows up when exploring type hierarchy in focused view

• Scent value: range of correlations to outcome in children 

• Size of glyph indicates magnitude of scent value

Evaluation
• 3 medical experts: health researchers with data analysis 

experience 

• Hands-on demonstration and semi-structured interviews

• Results from thematic analysis: 

• Training is required

• Automated selection of aggregation level useful 

• Navigating through event type hierarchy was intuitive
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What-Why-How Analysis 
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What: Data

• Tree (event type 
hierarchy)

• Table (patient data)

What: Derived

• Optimal event grouping

• Informativeness score,  
scent value, optimized y-
positions

Why

• Discover and 
produce (event type 
groupings)

Scale: 5,000 patients, 
700,000 events, 10,000 

unique event types 

What-Why-How Analysis 
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How: Encode

• Scatterplots

• Color (outcome correlation)

How: Reduce

• Item aggregation (grouping 
event types) 

• Scenting (picking event type)

How: Change

• Select (mark in scatter)

How: Facet

• Overview+detail view 
(scatter-plus-focus)

• Layering (grey hexes in 
background) 

Critique
• Strengths

• Intuitive, simple algorithms 

• Dealt with challenges of occlusion and distortion

• Switching between views and parameter control reduces 
load

• Generalizable to contexts other than health
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Critique
• Weaknesses/Limitations

• Automated approach to aggregation may hide better 
custom groupings

• Adding event type groups can be tedious

• Reliance on tree-based event type hierarchy
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Thank You!

Visual Analysis of High-Dimensional Event Sequence Data 
via Dynamic Hierarchical Aggregation
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