Paper Presentation: An Analysis of Automated Visual Analysis Classification: Interactive Visualization Task Inference of Cancer Genomics Domain Experts

> John-Jose Nunez CPSC 547 November 19, 2019

Have you ever thought....

• "They only included 3 users in their user study, do they really speak for all users? (overfitting?)"

• "Is a user study in the lab even applicable to the real world? (observation effect)"

Solution

• Let's collect logs from many real world users

• Let's then use machine learning to automatically classify those logs to understand use patterns etc.

An Analysis of Automated Visual Analysis Classification: Interactive Visualization Task Inference of Cancer Genomics Domain Experts

Connor C. Gramazio¹⁰, Student Member, IEEE, Jeff Huang, and David H. Laidlaw, Fellow, IEEE

• <u>https://vimeo.com/364568057</u>

Introduction

- Interaction log analysis can circumvent these problems
 - Can study larger populations so wider range of uses
 - "Ecological validity", no interference from direct observation

- Specifically look at mouse interactions
 - Substitute for eye-tracking
 - More information than what software features used

Related Work

- "Clickstream interactive research"
 - What users click to navigate webpages
- Action log analysis
 - Sequences of basic software interactions eg filter, sort, select
- Hand-coding interactions
 - Applied to a similar tool in this paper

Tool Being Studied: MAGI

Online visualization tool

- Cancer genomics
 - Investigate DNA mutations associated with cancers
 - Users: from wet lab biologists to pharmaceutical researchers

Super Brief Domain Background

- DNA is the code of our cells
- Cancer results from bugs in code (mutation)
- Cancer to mutation == many to many
- Mutations relevant for diagnosis, treatment

Tool: MAGI

- (i) Aberration view
 - Pattern of mutations in gene sets across tumors
- (ii) Aberration view row/heat maps
 - Show gender, survival, purity

Tool: MAGI

- (iii) Heat map
 - User uploads, e.g. shows methylation for different tumors
- (iv) Network view
 - Interaction between gene

Tool: MAGI

- (v) Transcript view
 - Detail view of subset (one gene) showing mutation types/location
- (vi) Copy-number view
 - Another detail view of one gene
- Clicking activates highlighting to show a linked view

MAGI: Who/What/Why/How

- Who:
 - Cancer researchers in wet/dry labs, industry

- What:
 - DNA mutations present in cancer samples

MAGI

- Why:
 - Mostly discover
 - Browse/explore
 - Some identify, mostly compare
- How:
 - Multiform, overview/detail views
 - Linked views
 - Multiple idioms (heatmap, network graph, bar charts...)

Step 1: Task Identification with MAGI Creators

- 2 participants who created MAGI
- Randomly sampled logs from MAGI users
- 25 tasks labelled per participants, with free text
 - But based on a separate vis of the log data

 Then grouped these descriptions into 8 separate task categories (in a few slides)

TABLE 1 Data Contained in Each MAGI Mouse Trace Interaction Log

Type of information	Attributes
Mouse events	{click, move, scroll}, time, x, y
Tooltip events	x, y, width, height
MAGI components (×6)	x, y, width, height
Window state	width, height
Query	number of genes and datasets

MAGI components refer to the five visualizations and control panel.

Rectangles = areas of tool. Orange/red/purple = mouse movement/click/scroll

Step 2: Generate Task Labels with Users

- 5 grad student pairings, containing 1 genomics expert and 1 vis expert
- Labelled logs with 1 of the 8 defined tasks
- 96-random order trails
 - 48-trials unique
 - 48-trials repeated between subjects

- Half of the log trials were repeated
 - Inter-rater reliability measured
 - Fleiss' K 0.405
 - "fair-to-good" reliability
- Accuracies consistent among rater groups
- Group 4 weakest, the CS partner had least experience

Step 3: Task Classification

- Testing set:
 - the 48 trails all groups did used for IRR

- Training set:
 - all remaining trials (48*5), used for training and crossvalidation

TABLE 2

An Overview of Three Feature Sets Used in Our Classification (Not Shown: "All," the Combination of These Sets)

ROI Transition [37]	Dwell [4]	Mouse Tracking [38]
transition count transitioned-to count	total time μ dwell time σ dwell time # datasets # genes	stationary H transition H total time \forall ROI active time \forall ROI dwell time \forall ROI μ active time \forall ROI μ dwell time \forall ROI

ROI transition count is short-hand for the complete adjacency matrix of transition features between each ROI. Transitioned-to count sums one dimension of the complete matrix. μ : mean, σ : deviation, H: entropy.

ROI = Region of Interest (views of the tool)

Classifiers Tested

• Used random forests, SVMs, and *k*-nearest neighbours

 Justified as using machine learning models that are widely familiar

• Tested different sets of features

TABLE 3 Parameter Selection for Each Tested Classifier

Classifier	Feature Set	Parameters
k-nearest	All	k = 9, w=distance
k-nearest	Dwell	k = 10, w=uniform
k-nearest	ROI Transition	k = 5, w=distance
k-nearest	Mouse Tracking	k = 7, w=uniform
Linear SVM	All	c = 69.519
Linear SVM	Dwell	c = < 0.001
Linear SVM	ROI Transition	c = 0.001
Linear SVM	Mouse Tracking	c = 0.004
Random Forest	All	estimators=75
Random Forest	Dwell	estimators=40
Random Forest	ROI Transition	estimators=40
Random Forest	Mouse Tracking	estimators=40

w: weight.

Mean Modal and Match-Any Accuracies

Match any = at least 1 group labelled

- Random Forests significantly the best
- Mouse tracking the best (across all), including better than all
- Dwell, ROI transitions may have worsened performance
- Best combo RF + mouse tracking

Results/Author's Discussions

- Benefits from these results to tool design:
 Which parts of the tool are used most often
 - Proximity to most used parts matter
 - "Top-down" vs "bottom-up" strategies for exploration
 - Some contradicted prior user studies e.g. what tasks used

Results/Author's Discussions

 As classification results different than previous user studies, authors suggest utilizing a combination (user study + automated classification)

• Make detailed predictions with in lab-observations

• Identify bias using logs

Broader Generalizability

 Show that mouse interactions may be more deterministic than text-focused interaction logs

- Unsupervised learning's potential an open problem
 - Segmenting logs, however, could be a difficulty

Critique - Strengths

• Objective user studies better allow "evidence-based" design and reproducible (real) results

• Machine learning: used a few, popular models (not too many, not too few?)

• Thought out design, e.g. quantifying inter-rater reliability

Critique – Weaknesses

- Labelling, should that have been done with the logs vs screen capture?
 - Better gold standard? But perhaps could not get data
- Were "match-any" results a bit deceptive?
 - At least in the main result figure?
- The tool lent itself well to the study, but was it popular/representative/used?

MAGI (published 2015)

③ Not secure | magi.brown.edu

502 Bad Gateway

nginx/1.2.1

Thank you!

3 0

Questions?