Paper Presentation:

An Analysis of Automated Visual Analysis
Classification: Interactive Visualization Task
Inference of Cancer Genomics Domain
Experts

John-Jose Nunez
CPSC 547
November 19, 2019



Have you ever thought....

* “They only included 3 users in their user study, do they
really speak for all users? (overfitting?)”

* “Is a user study in the lab even applicable to the real world?
(observation effect)”



Solution

* Let’s collect logs from many real world users

* Let’s then use machine learning to automatically classify
those logs to understand use patterns etc.
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https://vimeo.com/364568057

Introduction

* Interaction log analysis can circumvent these problems
e Can study larger populations so wider range of uses
e “Ecological validity”, no interference from direct observation

* Specifically look at mouse interactions
e Substitute for eye-tracking
* More information than what software features used



Related Work

e “Clickstream interactive research”
* What users click to navigate webpages

* Action log analysis
e Sequences of basic software interactions eg filter, sort, select

* Hand-coding interactions
* Applied to a similar tool in this paper



Tool Being Studied: MAGI

 Online visualization tool

* Cancer genomics
* Investigate DNA mutations associated with cancers

e Users: from wet lab biologists to pharmaceutical
researchers



Super Brief Domain Background

* DNA is the code of our cells
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Tool: MAGI

* (i) Aberration view

e Pattern of mutations in
gene sets across tumors

e (ii) Aberration view
row/heat maps

* Show gender, survival,
purity
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Tool: MAGI

* (iii) Heat map
e User uploads, e.g. shows

methylation for different
tumors

* (iv) Network view

* Interaction between
gene
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Tool: MAGI

* (v) Transcript view
* Detail view of subset
(one gene) showing
mutation types/location

* (vi) Copy-number view
* Another detail view of one
gene

* Clicking activates
highlighting to show a
linked view
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MAGI: Who/What/Why/How

* Who:
* Cancer researchers in wet/dry labs, industry

* What:
* DNA mutations present in cancer samples



MAGIH

* Why:
* Mostly discover
* Browse/explore
* Some identify, mostly compare

* How:
* Multiform, overview/detail views
* Linked views
* Multiple idioms (heatmap, network graph, bar charts...)



Step 1: Task ldentification with MAGI Creators

e 2 participants who created MAGI
* Randomly sampled logs from MAGI users

» 25 tasks labelled per participants, with free text
* But based on a separate vis of the log data

* Then grouped these descriptions into 8 separate task
categories (in a few slides)



TABLE 1
Data Contained in Each MAGI Mouse Trace Interaction Log

Type of information Attributes

Mouse events {click, move, scroll}, time, x, y
Tooltip events X, y, width, height

MAGI components (x6) X, y, width, height

Window state width, height

Query number of genes and datasets

MAGI components refer to the five visualizations and control panel.
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Step 2: Generate Task Labels with Users

5 grad student pairings, containing 1 genomics expert and 1 vis expert
* Labelled logs with 1 of the 8 defined tasks

* 96-random order trails
e 48-trials unique
» 48-trials repeated between subjects

INSTRUCTIONS PRrACTICE
Informed . Demographic
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* Half of the log trials were
repeated
* Inter-rater reliability
measured
* Fleiss’ K0.405
e “fair-to-good” reliability

* Accuracies consistent among
rater groups

* Group 4 weakest, the CS
partner had least experience
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Step 3: Task Classification

* Testing set:
* the 48 trails all groups did used for IRR

* Training set:
e all remaining trials (48*5), used for training and cross-
validation



TABLE 2
An Overview of Three Feature Sets Used in Our Classification
(Not Shown: “All,” the Combination of These Sets)

ROI Transition [37] Dwell [4] Mouse Tracking [38]

transition count total time stationary H
transitioned-to count u dwell time transition H
o dwell time total time V ROI

# datasets active time V ROI

# genes dwell time V ROI
u active time V ROI
w dwell time V ROI

ROI transition count is short-hand for the complete adjacency matrix of transi-
tion features between each ROI. Transitioned-to count sums one dimension of
the complete matrix. w: mean, o: deviation, H: entropy.

ROI = Region of Interest (views of the tool)
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Classifiers Tested

* Used random forests, SVMs, and k-nearest neighbours

e Justified as using machine learning models that are widely
familiar

e Tested different sets of features



TABLE 3

Parameter Selection for Each Tested Classifier

Classifier Feature Set Parameters
k-nearest All k =9, w=distance
k-nearest Dwell k = 10, w=uniform
k-nearest ROI Transition k = 5, w=distance
k-nearest Mouse Tracking k = 7, w=uniform
Linear SVM All c=69.519
Linear SVM Dwell c =< 0.001
Linear SVM ROI Transition ¢ = 0.001
Linear SVM Mouse Tracking c = 0.004
Random Forest All estimators=75
Random Forest Dwell estimators=40
Random Forest ROI Transition estimators=40

Random Forest

Mouse Tracking

estimators=40

w: weight.
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Mean Modal and Match-Any Accuracies
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Results/Author’s Discussions

* Benefits from these results to tool design:
* Which parts of the tool are used most often

* Proximity to most used parts matter
* “Top-down” vs “bottom-up” strategies for exploration

* Some contradicted prior user studies e.g. what tasks used



Results/Author’s Discussions

* As classification results different than previous user studies,
authors suggest utilizing a combination (user study +
automated classification)

* Make detailed predictions with in lab-observations

* |[dentify bias using logs



Broader Generalizability

* Show that mouse interactions may be more
deterministic than text-focused interaction logs

* Unsupervised learning’s potential an open problem
* Segmenting logs, however, could be a difficulty



Critique - Strengths

* Objective user studies better allow “evidence-based”
design and reproducible (real) results

* Machine learning: used a few, popular models (not too
many, not too few?)

* Thought out design, e.g. quantifying inter-rater reliability



Critigue — Weaknesses

* Labelling, should that have been done with the logs vs
screen capture?
e Better gold standard? But perhaps could not get data

* Were “match-any” results a bit deceptive?
* At least in the main result figure?

* The tool lent itself well to the study, but was it
popular/representative/used?



MAGI (published 2015)

() Not secure | magi.brown.edu

502 Bad Gateway

ngmx/1 2.1
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Thank you!

Questions?
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