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Which colourmap is the best at visualizing the data’




Paper contributions

e Paper type: evaluation
e Describes way to measure frequency-dependent
discriminative power function of a colourmap
o Discriminative power: ability to distinguish
different colours
o Frequency-dependent: more later
e Defines metric for “overall discriminative power”

across entire range of a colourmap



Spatial frequency

e Discriminative power depends on
spatial frequency

e Uniform colour spaces (UCS) intended
to be visually uniform

o Based on measurements between
large patches of uniform colour

e Thus, uniform colour spaces may not

actually appear uniform in high-

frequency datavis contexts!

The bands visually disappear at different

heights along the image.
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Empirical study

Paper devises empirical study for measuring
discriminative power across multiple spatial
frequencies

Used 600x600px images

For each column, participants click the area
where the sinusoidal pattern disappears
Tested nine colour sequences and three
frequencies (10px, 15px, 45px)

o For each sequence, tested 30 locations
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Tested colourmaps
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RA: Rainbow colormap. This version comes from
Paraview software

CW:The Moreland cool-warm colormap

ECW: Extended cool-warm colormap from Samsel

BOD: Blue-orange-red divergent colormap from Samsel

GP: A uniform grey colormap

GR: Approximately equiluminous green-red colormap

BY: An approximately equiluminous yellow-blue
colormap

VI: Viridis colormap prized for its uniformity

TH: A colormap sometimes used in thermal imaging




Results
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Results
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Results
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Which colourmap should | use?

e Despite having the
highest discriminative
power, the thermal

colourmap is confusing.




Which colourmap should | use?

e Despite having the
highest discriminative
power, the thermal
colourmap is confusing.

e Same also applies to
divergent colourmaps,

to some degree.
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Reweighting CIELAB

e Discriminative power should

538 8

correspond to distance traversed by i

Average Discriminative
Power

colourmap in uniform colour space

e Paper describes simplistic way to L*a*b* Path Length
reweight CIELAB space to take into 1000 [ 020992 ™

account the measured values in the

paper
o Equal weight is given to the

Average Discriminative
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(Own) critique

Instead of reweighting CIELAB in a way that is
good for all datasets, maybe it would be better to
collect data for many frequencies and reweight
based on data that is currently being plotted
Minimum discriminative power may be a better
metric than mean discriminative power
Outliers were manually removed

Sample size a bit small: only 21 - 35 participants

per colourmap
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