Visual Genealogy of Deep Neural Networks (DNNs)

•••

Q. Wang, J. Yuan, S. Chen, H. Su, H. Qu and S. Liu. *IEEE Transactions on Visualization and Computer Graphics*. doi: 10.1109/TVCG.2019.2921323

Jeffrey Goh

What are Deep Neural Networks (DNNs)?

- A set of algorithms designed to recognize patterns. (Cluster and classify)
- Consists of multiple hidden layers between input and output.
- Examples: Language translation, speech recognition and music genre classification

Motivations for visualizing DNNs

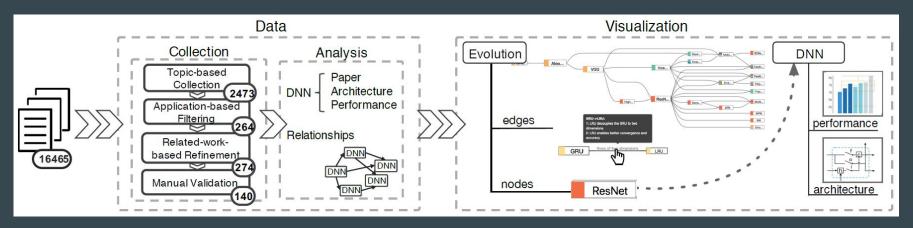
- Inspire and motivate the wide adoption and extensive use of DNNs.
- Working mechanisms remain unclear.

Goals

- Facilitate the exploratory analysis of different DNNs.
- Understand the pros and cons of each DNN.
- Summarize the large number of existing DNNs.

Challenges

- Rising number of DNNs.
 - Summarizing representative DNNs.


- The consideration is a consideration in the consideration in the consideration is a consideration in the consideration in the consideration is a consideration in the consideration in the consideration is a consideration in the consideration in the consideration is a consideration in the consideration in the consideration is a consideration in the consideration in the consideration is a consideration in the consideration in the consideration is a consideration in the consideration in the consideration is a consideration in the consideration in the consideration is a consideration in the consideration in the consideration is a consideration in the consideration in the consideration is a consideration in the consideration in the consideration is a consideration in the consideration in the consideration is a consideration in the consideration in the consideration is a consideration in the consideration in the consideration is a consideration in the consideration in the consideration is a consideration in the consideration in the consideration is a consideration in the consideration in the consideration is a consideration in the consideration in the consideration is a consideration in the consideration is a consideration in the consi
- Complexity of DNN architectures.
 - Deep layers (over 1200 layers), multiple branches and dense skip connections.
- Diversity of DNNs.
 - Identifying the evolutionary relationships among DNNs.

Design Requirements

- 1) Learning the evolution of DNN architectures.
 - a) Explaining the relationships among DNNs
 - b) Identifying the evolution pattern of a DNN architecture
 - c) Identifying representative DNNs
- 2) Investigating one particular DNN
 - a) Understanding a DNN from different aspects
 - b) Illustrating DNN architectures
 - c) Comparing different DNNs

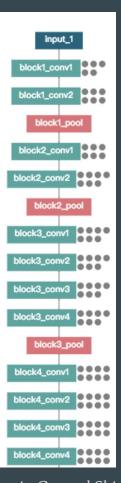
System Overview

- 1) Extract papers \rightarrow 2) Identify representative DNNs \rightarrow
- 3) Identify common architectures \rightarrow 4) Identify relationships \rightarrow
- 5) Calculate performances \rightarrow 6) Visualize

[Fig 3. Visual Genealogy for Deep Neural Networks. Qianwen Wang, Jun Yuan, Shuxin Chen, Hang Su, Huamin Qu, and Shixia Liu. IEEE Transactions on Visualization and Computer Graphics. doi: 10.1109/TVCG.2019.2921323]

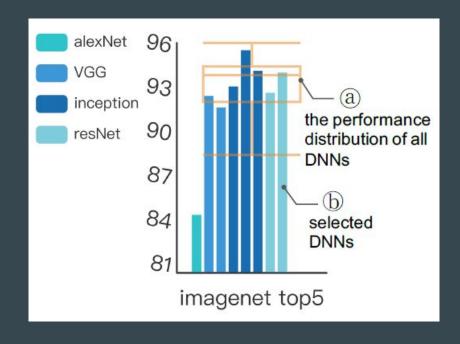
DNN visualization

Network glyphs (abstract level)

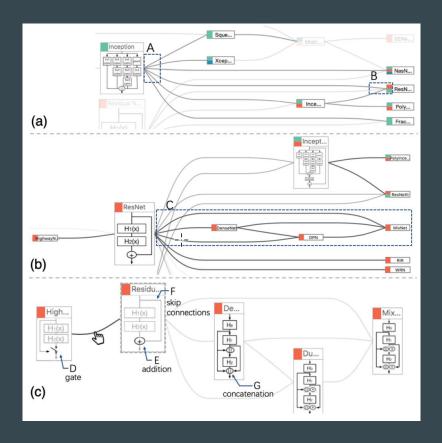

CNN				RNN				
Streamline	Depthwise separable conv	Multi-branch	Skip con- nections	Stacked	Bidirectional	Multiple time-scales	Gated	Tree-structured
H ₁ (x)		Hex Hix Hex	H ₁ (x) H ₂ (x)			ht-d H; ht Ht+1	->+H;+	
Layers are stacked on top of one other	A standard convolution is split into depthwise convolution and a 1x1 convolution	The output of one layer goes through multiple branches and then converges	A con- nection skips one or more layers	Layers are stacked to increase the depth of a RNN	A standard re- current unit is split into two parts to pro- cess the in- put sequence in two direc- tions	Recurrent units operate at multi- ple time scales	Add the gate mecha- nism	The connection graph is structured as a tree
E.g., VGG [55]	E.g., Xception [14]	E.g., Inception [58]	E.g., ResNet [22]	E.g., EESEN [45]	E.g., BRNN [53]	E.g., Clockwork RNN [31]	E.g., LSTM [24]	E.g., Tree- LSTM [59]

[Table 1. Visual Genealogy for Deep Neural Networks. Qianwen Wang, Jun Yuan, Shuxin Chen, Hang Su, Huamin Qu, and Shixia Liu. IEEE Transactions on Visualization and Computer Graphics. doi: 10.1109/TVCG.2019.2921323]

DNN Visualization


Complete architecture graph (Concrete level)

- Directed Acyclic Graph (DAG)
 - Sugiyama-style layered graph drawing
- Color coding
 - Different types of layers
- Dots representation
 - Number of parameters


Performance Visualization

- Bar charts
 - Performance of DNNs
- Box plot
 - Performance distribution
- Color coding
 - Type of DNN
- Datasets used:
 - imagenet top5/top1
 - cifar10/ cifar100

Evolution Visualization

- Nodes: DNN
- Edges: Relationships
- Focus + Context
 - Nodes vs Network Glyphs
 - Degree of Interest (DOI)
- Color encoding

[Fig 8. Visual Genealogy for Deep Neural Networks. Qianwen Wang, Jun Yuan, Shuxin Chen, Hang Su, Huamin Qu, and Shixia Liu. IEEE Transactions on Visualization and Computer Graphics. doi: 10.1109/TVCG.2019.2921323]

DEMO

Limitations and future work

- 1) Training methods not included in visualization.
- 2) DNN scope only limited to 3 benchmarks (Classification, detection and segmentation).
- 3) DOI heuristic algorithm only considers limited aspects.
 - a) Performance and complexity of architecture may be added in future.

Critique

Strengths

- Well justified design choices
- Simple and neat layout
- A wide variety of DNNs covered consistently
- Effective in achieving what it was meant to do

Weaknesses/Limitations

- Insufficient case studies
- Unintuitive functions
- Inconsistencies in design
- Poor DOI algorithm

Questions?