Visual Genealogy of Deep Neural Networks (DNNs)

IEEE Transactions on Visualizat doi: 10.1109/TVCG.2019.2921323

Jeffrey Goh

Design Requirements

- 1) Learning the evolution of DNN architectures.
 - a) Explaining the relationships among DNNs
 - b) Identifying the evolution pattern of a DNN architecture
- 2) Investigating one particular DNN
 - a) Understanding a DNN from different aspects
 - b) Illustrating DNN architectures

What are Deep Neural Networks (DNNs)?

- and classify)

3) Identify common architectures \rightarrow 4) Identify relationships \rightarrow

Analysis Paper

Motivations for visualizing DNNs

- Working mechanisms remain unclear.

Goals

- Facilitate the exploratory analysis of different DNNs.

DNN visualization

	Deathurise					RNN				
Streamline	separable	Multi-branch	Skip con- nections	Stacked	Bidirectional	Maltiple time-scales	Gated	Tree-structured		
	88 9		-	¢¢¢¢ ¢¢¢¢	, defe	¢-¢⇒¢	->-	t de la companya de l		
Layers are stacked on top of one other	A standard convolution is split into depthwise convolution and a 1x1 convolution	The output of one layer goes through multiple branches and then converges	A con- nection skips one or mceo kayers	Layers are stacked to increase the depth of a RNN	A standard re- current unit is split into two parts to pro- coss the in- part sequence in two direc- tions	Recurrent units operate at multi- ple time scales	Add the gate mecha- nism	The connec- tion graph is structured as a tree		
E.g., VGG (55)	E.g., Xception [14]	E.g., Inception [58]	E.g., ResNet [22]	E.g., EESEN [45]	E.g. BRNN (53)	E.g., Clockwork RNN [31]	E.e. LSTM (24)	E.g., Tise- LSTM (59)		

Challenges

input_1

block1_conv1 Mack1_corv2 block1_pool

block2_conv1

block2_com2

block2_post Mock2_con1

block2_conv2 block2_conv3

block3_conv4

block2_post Mock4_0001

540044_00042

block4_com0

- Complexity of DNN architectures.

DNN Visualization

Limitations and future work

- 1) Training methods not included in visualization.
- 2) DNN scope only limited to 3 benchmarks (Classification,
- DOI heuristic algorithm only considers limited aspects.

Performance Visualization

- Color coding
- Datasets used:
- cifar10/ cifar100

alexNet 96 VOG

resNet 90

inception

93

Critique

- A wide variety of DNNs covered consistently
- Weaknesses/Limitations

Ouestions?

DEMO

Evolution Visualization

Į.

System Overview