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The Contribution of This Paper is:

e A visual analytics framework that supports the examination,
creation, and exploration of adversarial machine learning
attacks;

e A visual representation of model vulnerability that reveals the
impact of adversarial attacks in terms of model performance,
instance attributes, feature distributions, and local structures.
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To demonstrate the
proposed visual
analytics
framework, we
focus our

discussion on:

Targeted Data
Poisoning Attack
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General Aspects Targeted Poisoning Attack
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VISUAL ANALYTICS FRAMEWORK

The framework supports three main activities:

1. Vulnerability analysis
2. Attack space analysis
3. Attack results analysis
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Vulnerability Analysis

o (ore idea: To change the label of the target instance
o Attack algorithms: Binary-Search Attack & StingRay Attack
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Vulnerability Analysis

e Vulnerability Measures (to explore the potential
weaknesses in the model):
o Decision Boundary Distances (DBD)
o Minimum Cost for a Sucecessful Attack (MCSA)
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Visualizing the Attack Spac.

e Vulnerability Measures:
o Decision Boundary Distances (DBD)

o Minimum Cost for a Successful Attack (MCSA)
o Performance metrics of the poisoned model (Accuracy, Recall, ete.)

e FEach instance in the training dataset is measured based on these
vulnerability measures.
e Video
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https://www.youtube.com/watch?v=eMyhe7WcOXc

Attack Detail Analysis

Model Overview
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Attack Detail Analysis
@ INSTANCE VIEW
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e Key Attributes for Instances:
o Decision Boundary Distances
o Classification Probabilities

o Labels of K-NNs
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e (Overview of the
data distribution
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Attack Detail Analysis
@ INSTANCE VIEW
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Attack Detail Analysis

"FEATURE VIEW

Feature View ] o roe
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e Data Distributions on Features
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Innocent Instances

Attack Detail Analysis o merven(G
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Case Study



Critiques

e Strengths
o Two stage design in the interface
o Very user friendly
o  Multi Faceted Analysis
o Weaknesses
o Only allows to attack one instance
o Speed on bigger datasets and more complicated models
o Secalability (Visual design, Attack Algorithm).
m Case studies are too simplified.
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Thank you!
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Innocent Instances
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