
Visualization Linter

Static and runtime check tool for D3.js

Youssef Sherif
Wei Zheng

1

Background

● Why do we need a visualization linter?
○ To help the “average Joe” data visualization user adhere to visualization best practices.

● Why two tools?
○ Each of the static analysis tool and run-time library have its own uses, pros, and cons.

2

Static Analysis Tools

● Not meant to check data-related issues
○ Why? Because data is dynamic

■ Example: Http request from a backend server
● Meant to check for logical problems

3

Runtime Tools

● Has access to data during runtime
● Cons

○ Warnings and Errors are displayed on runtime (not immediately)

4

Programming Language and Framework:

● JavaScript
○ Web applications are on the rise

■ JavaScript is the default web language
● D3.js

○ Most popular
○ Open source

5

Previous Works

Andrew Mcnutt’s Vislinter

● Run-time library checker for Matplotlib
● He proposed a long list of data visualization rules
● Implemented few of them
● Wrote “Linting for Visualization: Towards a Practical Automated Visualization Guidance System”

paper

6

Existing JavaScript Runtime libraries checkers

● Check most popular run time checker libraries on npm
● We are planning to check the public API for at least one of these libraries

to conform to best practices for runtime library checkers

7

Matplotlib vs D3.js

Matplotlib D3.js

High level library Low-level library

Less control More control

Easier to build simple visualizations Harder to build simple visualizations

Can easily infer statically the visualization
the user wants to build

Hard to infer statically the visualization the
user wants to build

8

Implementation

● Static Analysis Tool
○ ESlint plugin

■ ESlint is the most widely used JavaScript pluggable static linter

● Run-time library checker
○ A regular npm package

9

What are our personal expertise?

Youssef

● Worked as a full-stack web developer
○ Used JavaScript and other JavaScript libraries

● Partially built static analysis tools

William

● Experienced in Data Analysis with Python, and visualization tools, including
Matplotlib and Seaborn

● Built a web app using vanilla JavaScript
● Applied machine learning algorithms with Java

10

What we are supposed to do?

Youssef

● Build the static analysis tool
● Structure the runtime checker library and set the public API
● Set webpack and npm scripts to be used for the library

William

● Select the rules for runtime checking
● Implement the runtime check part

11

Resources for Rules for Best Practices

● Tamara’s book “Visualization Analysis and Design”
○ Example: order of effectiveness

● The Visualization Guidelines Repository
● Yan Holtz’s online guideline

12

http://visguides.repo.dbvis.de/guidelines.php
https://www.data-to-viz.com/caveats.html

Scenarios of Use

Static analysis tool

● Run a command line prompt

● Have the IDE detect it if we use ESlint

Run-time library checker

● Check console warnings

13

Future Advancements

Static analysis tool

● IDE extension

Run-time library checker

● Unobtrusive toasts

14

Attempt to implement a rule

“No horizontal labels”

15

Tried to implement the rule statically

Current Solution: use node.js to parse the entire js file written by users as string
and detect key words such as .selectAll("text") ,.attr("transform", "rotate(-90)")
to detect the part which users try to deal with the labels of x-axis.

Problem: This would not work if the text is the same as it is. For example using a
variable and the string ‘text’ would make our tool fail. This is where runtime checks
shine

16

Tried to implement the rule runtime with svg

Current Solution: use node.js to parse the entire js file written by users as string
and detect key words such as .selectAll("text") ,.attr("transform", "rotate(-90)")
to detect the part which users try to deal with the labels of x-axis.

Problem: This would not work if the text is the same as it is. For example using a
variable and the string ‘text’ would make our tool fail. This is where runtime checks
shine

17

Runtime Library

● Typescript instead of JavaScript
○ We think types would be of much help

since we would need to deal with the data
structures of the D3

● Karma and Jasmine for testing
○ We might replace that with Jest if the extra

speed is worth the change

Dealing with SVG

● Till now, it is almost
impossible for us to detect
from the SVG data structure
the graph’s features

Dealing with SVG

Check the rotation for the tick in
green circle in the following way:

In this way, we can check d3 at run
time.

Dealing with SVG

Weakness for this method:

Finding out related properties is the key to implement rules, however, it turns out
difficult.

Fragile when users intentionally change the class of DOM nodes generated by d3.

Deal with other elements instead of SVG?

● Since dealing with SVG is hard, we thought
about asking the user to manually provide in
code features of the graph like
○ The type of graph
○ X-axis of the graph if applicable
○ Y-axis of the graph if applicable

● Unlike SVG’s data structure, data structures
of other graph’s elements such as the axis
can are easier to parse and comprehend

Problems with this approach

● A D3 user might want to have a customized
graph that does not fit in one of the types we
support like a “bar chart” or “pie chart”

● A hassle for the user to provide all of these data
● Fragile since the user via D3 can transform the

svg itself later and these data structures might
not be representatives of the real graph

A third approach

Fork D3.js and manipulate the code inside to add checkers

● This approach needs a lot of time of studying D3 internal code
● We abandoned this approach

Final Approach: Use Chart.js instead of D3

● It appears that adding a runtime and static analysis checker might be
○ Fragile/inaccurate

■ Lots of false positive
● Reasons

○ It is hard to know the intent of what the user wants to visualize from the code or even the
exposed data structure
■ This might make it hard/almost impossible to implement most of the rules

○ The variety and possibilities of visualizations that might be drawn via D3 is almost infinite
■ Lots of rules would be inconvenient for lots of cases

● Example:

Different Approaches Comparison
Features/ Approach Parse SVG

in D3
Fork D3 and
modify internal
code

Parse Smaller
Elements in D3

Replace D3 with
another library

Ease of detecting
graph’s properties

Possible Unknown Hard Easy

Fragility Medium Unkown Fragile Not fragile

User’s ease of use Relatively
easy

Very easy Hard Relatively easy

Time needed to invest
in the project

A lot Extreme A lot Reasonable

Probability pursing
approach

Average Low Low High

Why Chart.js?

● Easier data structure interface
● Most adopted after D3 (based on

best of our knowledge)

ChartJS Simpler Data Structure

For example, I can directly know from the data structure that the chart is a “bar
chart” the title is at the top of the chart

