
Visualization Linter

Static and runtime check tool for D3.js

Youssef Sherif
Wei Zheng

1

Background
● Why do we need a visualization linter?

○ To help the “average Joe” data visualization user adhere to visualization best practices.

● Why two tools?
○ Each of the static analysis tool and run-time library have its own uses, pros, and cons.

2

Static Analysis Tools
● Not meant to check data-related issues

○ Why? Because data is dynamic
■ Example: Http request from a backend server

● Meant to check for logical problems

3

Runtime Tools
● Has access to data during runtime
● Cons

○ Warnings and Errors are displayed on runtime (not immediately)

4

Programming Language and Framework:
● JavaScript

○ Web applications are on the rise
■ JavaScript is the default web language

● D3.js
○ Most popular
○ Open source

5

Previous Works
Andrew Mcnutt’s Vislinter

● Run-time library checker for Matplotlib
● He proposed a long list of data visualization rules
● Implemented few of them
● Wrote “Linting for Visualization: Towards a Practical Automated Visualization Guidance System”

paper

6

Existing JavaScript Runtime libraries checkers

● Check most popular run time checker libraries on npm
● We are planning to check the public API for at least one of these libraries

to conform to best practices for runtime library checkers

7

Matplotlib vs D3.js
Matplotlib D3.js

High level library Low-level library

Less control More control

Easier to build simple visualizations Harder to build simple visualizations

Can easily infer statically the visualization
the user wants to build

Hard to infer statically the visualization the
user wants to build

8

Implementation
● Static Analysis Tool

○ ESlint plugin
■ ESlint is the most widely used JavaScript pluggable static linter

● Run-time library checker
○ A regular npm package

9

What are our personal expertise?
Youssef

● Worked as a full-stack web developer
○ Used JavaScript and other JavaScript libraries

● Partially built static analysis tools

William

● Experienced in Data Analysis with Python, and visualization tools, including
Matplotlib and Seaborn

● Built a web app using vanilla JavaScript
● Applied machine learning algorithms with Java

10

What we are supposed to do?
Youssef

● Build the static analysis tool
● Structure the runtime checker library and set the public API
● Set webpack and npm scripts to be used for the library

William

● Select the rules for runtime checking
● Implement the runtime check part

11

Resources for Rules for Best Practices
● Tamara’s book “Visualization Analysis and Design”

○ Example: order of effectiveness

● The Visualization Guidelines Repository
● Yan Holtz’s online guideline

12

http://visguides.repo.dbvis.de/guidelines.php
https://www.data-to-viz.com/caveats.html

Scenarios of Use
Static analysis tool

● Run a command line prompt

Run-time library checker

● Check console warnings

13

Future Advancements
Static analysis tool

● IDE extension

Run-time library checker

● Unobtrusive toasts

14

Attempt to implement a rule
“No horizontal labels”

15

Tried to implement the rule statically
Current Solution: use node.js to parse the entire js file written by users as string
and detect key words such as .selectAll("text") ,.attr("transform",
"rotate(-90)") to detect the part which users try to deal with the labels of x-axis.

Problem: This would not work if the text is the same as it is. For example using a
variable and the string ‘text’ would make our tool fail. This is where runtime checks
shine

16

