
Visualization Linter

Static and runtime check tools

Youssef Sherif
Wei Zheng

Demo
● Static Analysis tool
● Runtime Library

2

https://chartjs-runtime-vis-linter-demo.now.sh

Background
● Why do we need a visualization linter?

○ To help the “average Joe” data visualization user adhere to visualization best practices
○ Educate the users about data vis in a user-friendly and intuitive manner

● Why two tools?
○ Each of the static analysis tool and run-time library have its own uses, pros, and cons.

3

Static Analysis Tools
● Not meant to check data-related issues

○ Why? Because data is dynamic
■ Example: Http request from a backend server

● Meant to check for logical problems

4

Runtime Tools
● Has access to data during runtime
● Cons

○ Warnings and Errors are displayed on runtime (not immediately)

5

Programming Language and Framework
● JavaScript

○ Web applications are on the rise
■ JavaScript is the default web language

● D3.js and Chart.js
○ Most popular
○ Open source

6

Implementation
● Static Analysis Tool

○ ESlint plugin
■ ESlint is the most widely used JavaScript pluggable static linter

● Run-time library checker
○ A regular npm package

7

Resources for Rules for Best Practices
● Tamara’s book “Visualization Analysis and Design”

○ Example: order of effectiveness

● The Visualization Guidelines Repository
● Yan Holtz’s online guideline

8

http://visguides.repo.dbvis.de/guidelines.php
https://www.data-to-viz.com/caveats.html

Dealing with SVG
Check the rotation for the tick in
green circle in the following way:

In this way, we can check d3 at run
time.

9

Dealing with SVG
● Impossible for some rules, very hard for others
● Fragile

10

Deal with other elements instead of SVG?
● Since dealing with SVG is hard, we thought

about asking the user to manually provide in
code features of the graph like

○ The type of graph
○ X-axis of the graph if applicable
○ Y-axis of the graph if applicable

● Unlike SVG’s data structure, data structures
of other graph’s elements such as the axis
can are easier to parse and comprehend

11

Problems with this approach
● A hassle for the user to provide all of these data

12

A third approach
Fork D3.js and manipulate the code inside to add checkers

● This approach needs a lot of time of studying D3 internal code
● We abandoned this approach

Different Approaches Comparison
Features/ Approach Parse SVG

in D3
Fork D3 and
modify internal
code

Parse Smaller
Elements in D3

Replace D3 with
another library

Ease of detecting
graph’s properties

Possible Unknown Hard Easy

Fragility Medium Unknown Fragile Not fragile

User’s ease of use Relatively
easy

Very easy Hard Relatively easy

Time needed to invest
in the project

A lot Extreme A lot Reasonable

Probability pursing
approach

Average Low Low High
14

Final Approach: Use Chart.js instead of D3
● It appears that adding a runtime and static analysis checker might be

○ Fragile/inaccurate
■ Lots of false positive

● Reasons
○ It is hard to know the intent of what the user wants to visualize from the code or even the

exposed data structure
■ This might make it hard/almost impossible to implement most of the rules

○ The variety and possibilities of visualizations that might be drawn via D3 is almost infinite
■ Lots of rules would be inconvenient for lots of cases

● Example:

15

Why Chart.js?
● Easier data structure interface
● Most adopted after D3 (based on

best of our knowledge)

16

17

ChartJS Simpler Data Structure
For example, we can directly know from the data structure that the chart is a “bar
chart” the title is at the top of the chart

18

Comparison: applying rules of d3 and chart.js

Visualization Rules
Implementation
Complexity in d3

Implementation
Complexity in
chart.js

Implemented

Don't plot more than 4 lines in one chart. If you
need to display more, break them out into
separate charts for better comparison.

Easy Easy √

Set the height of a line chart such that the data
in the line chart takes up approximately
two-thirds of the y-axis’ maximum scale.

Hard Easy √

Use lines when connecting sequential data in
time-series plots

Hard Hard ×
Use solid lines only because dashed and
dotted lines can be misleading.

Easy Easy √
Label the lines directly to enable readers
identifying lines quickly using corresponding
labels instead of referencing a legend.

Hard Hard ×

Always include a Zero Baseline if possible. Medium Medium √ 19

Comparison: applying rules of d3 and chart.js

Visualization Rules
Implementation
Complexity in
d3

Implementation
Complexity in
chart.js

Implemented

Visual displays of information should present
both cause and effect.

Impossible Impossible ×
Good visualizations should maximize data-ink
ratio.

Hard Hard ×
Explaining the data helps viewers see the
relevance in the information.

Impossible Impossible ×
Don't make users do "visual math". Impossible Impossible ×
Change the layout for the graphical design to
improve the readability of the design.

Hard Hard ×
Create an approximation of the overall
structure but reduce the complexity so that it
may be easier to comprehend.

Hard Hard ×
20

Comparison: applying rules of d3 and chart.js
Visualization Rules

Implementation
Complexity in
D3

Implementation
Complexity in
Chart.js

Implemented

Use horizontal labels. Avoid steep diagonal or
vertical type, as it can be difficult to read.

Medium Medium √
Error bars considered harmful. Hard Hard ×
Use consistent colors. Use one color for bar
charts. You may use an accent color to
highlight a significant data point.

Medium Easy √

Don’t use 3D effects either, especially in bar
graphs. By making the bars look like cubes, the
tops become obscured and it is difficult to
discern where the top of the data really ends.

Hard Hard ×

Order data appropriately. Order categories
alphabetically, sequentially, or by value.

Hard Medium √
Space bars appropriately. Space between bars
should be ½ bar width.

Medium Already
implemented

√ for d3 21

Comparison: applying rules of d3 and chart.js

Visualization Rules
Implementation
Complexity in
d3

Implementatio
n Complexity
in chart.js

Implemented

Don't use more than 6 colours together. Medium Easy √
Don't use [RED and GREEN] or [ORANGE and
GREEN] to make comparison on the same
chart.

Medium Easy ×

Rainbow color Map is considered harmful. Medium Easy ×
Use colours judiciously to indicate
relationships and choose colour palettes that
facilitate the message conveyed in the figure.

Medium Easy ×

Double-check your colors for the color blind. Medium Easy √

22

Comparison: applying rules of d3 and chart.js
Visualization Rules

Implementatio
n Complexity
in d3

Implementatio
n Complexity
in chart.js

Implemented

Do not use blow-apart effects. Hard Hard ×
Allow for direct interactions with objects that
reveal new insights (e.g., sorting via drag).

Hard Hard ×
Use interaction in visualization sparsely and
cautiously.

Hard Hard ×
Overview first, zoom and filter, details on
demand.

Hard Hard ×
Visualization should pass the Squint test.
When you squint at your page, so that you
cannot read any of the text, you should still 'get'
something about the page.

Impossible Impossible ×

All nouns should be encoded in black, verbs in
red, adjectives in green, determiners in grey,
particles in brown, conjunctions in blue, and
Interjection in yellow.

Hard Hard ×
23

Comparison: applying rules of d3 and chart.js

Visualization Rules
Implementation
Complexity in
d3

Implementation
Complexity in
chart.js

Implemented

Make sure all data adds up to 100%. Medium Medium ×
Visualize no more than 5 categories per pie
chart.

Medium Easy √
Do not use multiple pie charts for comparison
as slices sizes are very difficult to compare
side-by-side.

Medium Easy ×

Pie charts are bad and 3D pie charts are very
bad.

Medium Medium ×
Order slices correctly by first placing the
largest section at 12 o’clock stretching
clockwise, and then placing the remaining
sections consistently either clockwise or
counter-clockwise in descending order.

Hard Easy √

24

Comparison: applying rules of d3 and chart.js

Visualization Rules
Implementation
Complexity in
d3

Implementation
Complexity in
chart.js

Implemented

Do not cut y-axis in bar chart. Medium Easy √

Do not cut y-axis in line chart Medium Easy √

25

To be done next
● Fix the npm package for the chartjs-runtime-vis-linter
● Make warning messages more friendly and understandable
● If we would publish our work in a paper, we need to be more methodological

on what rules to implement.
● Ability to turn on or turn off rules
● Categories (schools in DataVis), each with a batch of rules
● Implement more rules
● Add more resources for each rule
● Add tests for edge cases for the library

26

To be done next
● Implement auto-fix for static analysis rules
● For the runtime library, add the ability to do the check only during

development for performance reasons

27

Future Advancements

Run-time library checker

● Unobtrusive toasts

28

Project Output
● Source code for the d3-eslint-plugin (static analysis)
● Source code for the chart.js runtime linter
● D3-eslint-plugin docs
● Chart.js runtime linter docs
● Chart.js runtime linter online demo
● D3-eslint-plugin npm package
● Chart.js runtime linter npm package

29

https://github.com/youssefsharief/d3-data-vis-eslint-plugin
https://github.com/youssefsharief/chartjs-runtime-vis-linter
https://eslint-plugin-d3.now.sh/
https://chartjs-runtime-vis-linter.now.sh/
https://chartjs-runtime-vis-linter-demo.now.sh/
https://www.npmjs.com/package/eslint-plugin-d3
https://www.npmjs.com/package/chartjs-runtime-vis-linter

