
1

Cognitive Dimensions of Between-Table
Context Support in Direct Manipulation

Wrangling Interfaces

Steve Kasica

Dec. 13, 2019

Abstract
Despite many commercially available tools that

support or are designed explicitly for data

wrangling, there exists no systematic evaluation of

the strengths and weaknesses of these tools. This

analysis project for CPSC 547 Information

Visualization evaluates two popular and actively-

developed wrangling tools, OpenRefine and

Dataprep. By reproducing the wrangling processes

conducted by journalists originally using

idiosyncratic scripts written in Python and R on

real-world data identified in prior work, this

project is able to compare and contrast the

usability of both applications in the context of real-

world data. This usability analysis is based on the

cognitive dimensions of notation framework, a

user-interface independent set of tools designed

explicitly to facilitate such comparisons. In the end,

this report finds that OpenRefine and Dataprep

share much of the same core functionality;

although, Dataprep’s use of visualization leads to

less error-proneness in the overall process and

higher quality data its conclusion.

1. Introduction
This analysis project aims to reproduce the wrangling

process from two data journalism projects where the

journalists wrangled their data with scripts and

computational notebooks written in different

programming languages. This small but active group

of data journalist are proficient in many of the

computational tools and statistics techniques of data

science; however, they constitute a minority within the

population of all journalists who are increasingly

looking to enhancing their reporting and tell stories

with data. GUI-based, direct-manipulation wrangling

interfaces that do not require the user to write any

computer code thus have the potential to make data

available to more journalists.

Data preparation and wrangling is a well-known,

acknowledged step in data journalism. The conference

on Computer Assisted Reporting (CAR) holds

workshops and tutorials for professional journalists to

sharpen their data wrangling skills in R, Python, and

OpenRefine. University journalism departments offer

courses on data journalism and visualization also

incorporate a module on data cleaning, preparation, or

wrangling in the syllabus.

Journalists are an interesting sub-group to study in the

context of data wrangling because this user group is

exposed to a variety of data types and domains. One

data journalist may deal with both structured and

unstructured data from domains as diverse as civics,

biology, climatology, and social sciences. Also,

journalists often publish their analysis code and data

on public code repositories, such as GitHub. This

represents a rich data source on wrangling that was

utilized in prior work that this project builds upon.

2. Domain Background
This analysis project focuses on applications that

leverage visualization in the domain of data

wrangling.

2.1 What is data wrangling?
Data wrangling, also known as data munging, is not as

much an individual task as a process of iterative

exploration and transformation that enables analysis

[6]. This process includes many well-known,

overlapping data tasks such as: cleaning, reshaping,

integrating, integrity inspection, transforming,

restructuring, and tidying. While other disciplines of

computer science have developed fully automated

approaches to many of these same tasks, wrangling

2

differentiates itself by its unguided, exploratory

nature. Hence, wrangling is especially applicable to

journalist who obtain datasets through leaks or

freedom of information requests without a clear

picture of its potential applications or existing data

quality issues.

Wrangling is often implemented in single-use scripts

of sequential computer code or through manual table

transformations. Wrangling is often done in GUI-

based applications, such as Microsoft Excel, or as

scripts written in a computer programming language.

These wrangling scripts are often written in

programming languages such as Python, Perl, or R. A

script usually is only applicable to one wrangling

processes with a few individual datasets. Hence, the

initial cost of programming a script cannot be

amortized across different datasets even though many

of the lower level table transformation may be the

same. Wrangling in an application is often tedious,

when doing specific wrangling tasks in a general

purposes spreadsheet application [6].

In 2019, there exists many commercial and open-

source tools capable of wrangling data. Generally

speaking, these tools can be divided into two

categories: tools intended specifically for data

wrangling and general-purpose data tools with

wrangling features. This analysis only compares

OpenRefine and Google Cloud Dataprep, which are

two applications specifically for wrangling. These are

the only tools under consideration in this project

because they were recommend for advanced data

cleaning in the course Data Journalism and

Visualization with Free Tools [15]. This massive

online open course (MOOC) is organized by the

Knight Center for Journalism in the Americas and the

Google News Initiative. While this course also

addressed some data wrangling tasks in Google

Sheets, these tasks were mainly trivial compared to the

kinds of issues addressed with OpenRefine and

Dataprep.

2.2 Prior Work
This analysis project builds off of previous research I

conducted over a four-month period in the summer of

2019. I analyzed the workflows of data journalists in

the wild with a particular eye towards how this user

group wrangles data. In this artifact-mediated indirect

observational study of data wrangling in data

journalism analyses, I performed thematic analysis on

50 collections of computational notebooks and

programming scripts from 33 journalists at 26 news

organizations. This iterative process of open and axial

coding resulted in a hierarchial taxonomy of data

wrangling actions and observations that includes 131

codes.

2.3 Previously Identified Workflows
From this prior work, I utilize two artifacts in this

analysis project: the original raw datasets used by

professional journalists and the record of table

transformations applied to these datasets. Collectively,

these are referred to as workflows. This analysis

replicates two data wrangling workflows from

professional journalists. based on cleaning real data on

enrollment figures for long-term managed care plans

in New York State at The New York Times and the

other on water usage statistics following a years-long

drought by The Los Angeles Times.

The workflow Long-term Managed Care (LMC)

follows a tutorial taught by Sarah Cohen, then an

assistant editor for computer-assisted reporting at The

New York Times and adjunct professor at Columbia

University. This data has also been used to teach

advanced data cleaning to journalists as part of a data

journalism class at Columbia in 2015 and at the

Computer Assisted Reporting (CAR) conference in

2016. This workflow wrangles a single table of

Medicaid long-term managed care reports from New

York State, and presumably comes from an actual

wrangling activity conducted at The New York Times.

Cohen mentions the purpose of this activity is to

quickly compare companies on growth and size for

further investigation using traditional reporting

methods.

Figure 1: Raw data (left) and its final, wrangled output (right) in the

Long-term Managed Care (LMC) workflow.

It is just a coincidence that the Long-term Managed

Care (LMC) workflow comes from a news

organization on the eastern coast of North American

and the second workflow comes from a news

organization on the western coast. In Oct. 2016, the

3

Los Angeles Times published an investigation on

county water usage in California after the state

government rescinded a mandate restricting water

usage. California is a state in the U.S. that suffered

from years-long drought peaking between 2013 and

2015. Reporters Matt Stevens and Ryan Menezes

further investigated one county that stood out from the

rest of the data. This article is an example of the most

common genre of data journalism article seen in prior

work: articles that compare multiple entities along a

common performance metric. Often, the stories in this

kind of data are the outliers, as was the case with

Stevens and Menezes’s reporting.

3 Data and Task Abstraction
This analysis project derives domain-specific and

abstract tasks and data from prior work performing

qualitative analysis on records of how professional

journalists wrangle their data “in the wild.” Section 5

on methods and tool elaborates on this prior work.

3.1 Raw data wrangled by journalists
The data used in this project is the same raw data used

by journalists. This data was collected from

repositories made publically available in conjunction

with published articles. The raw data itself is checked

into the repository instead of providing instructions on

how to obtain it from its original source. This posterity

measure ensures that this raw data will remain

available for years to come.

These two workflows were selected because the data

they wrangle balances each other well. The New York

Times workflow deals with mostly categorical data

that exists in a pivot table in its raw form. The

workflow from The Los Angeles Times deals mostly

with quantitative data and more quantitative variables

derived from those in the raw data. While journalists

occasionally work with network and tree data [11], this

analysis project only considers simple flat tables

because it was he most common abstract data type

used in prior work.

The raw data used by The New York Times workflow

comes compiled from multiple Excel documents

obtains by reporters. This dataset was selected for this

project because it contains mostly categorical data.

This raw table data consists of five attributes and 3,782

items.

• Plan name (categorical): The name of the

healthcare plan. This attribute constitutes the

table key.

• Report Date (date): The month and year of

the enrollment report.

• Plan type (categorical): The type of long-

term managed care plan in the report.

• County name (categorical): the name of the

county in New York State.

• Enrollment (quantitative): the total number

of people enrolled in a plan per county.

The raw data used by the LA Times workflow comes

directly from California’s State Water Resources

Control Board. This state government entity

periodically publishes district-level water usage

statistics to their website. The LA Times includes an

Excel file in their repos published to the organization’s

account on GitHub. We know the raw data’s source

because it is listed in a section in the published, online

article called “How we did it.”

The raw version of this water usage table data straight

from the California government has 10,936 items and

32 attributes. The data dictionary constructed from the

raw data below is a subset of all data variables.

Figure 2: The raw data used by the Los Angeles Times comes straight

from California’s State Water Resources Control Board. The

structure of this data is more receptive to computational methods

and thus requires less reshaping than the data in the workflow from

The New York Times on long-term managed care enrollment

numbers. The final, wrangled form of this data is included in Figure

3.

4

• Supplier Name (Categorical): The name of
the municipal utility district, such as Easy

Bay Municipal Utilities District. This

attribute constitutes the table key.

• Mandatory Restrictions (Categorical,

expressed as Yes/No categories): Whether

the district was subject to mandatory water

restriction during the reporting month.

• Reporting Month (Date) The day, month,

and year of the report.

• REPORTED Total Monthly Water

Production Reporting Month
(Quantitative): potable water production

during the reporting month

• REPORTED Total Monthly Potable

Water Production 2013 (Quantitative): the
water production for the observation month

in 2013.

• Total Population Served (Quantitative): the

population served by the utility district.

• Supplier has Agricultural Water Use

Exclusion Certification (Categorical,

expressed as Yes/No categories): Whether
the utility district can subtract water

delivered for commercial agriculture from

their total potable water production total.

• % Residential Use (quantitative): The
percentage of potable water that’s intended

for residential use.

Both tables consist of categorical and quantitative

data. The attributes “Supplier has Agricultural Water
Use Exclusion Certification” and “Mandatory

Restrictions” from the Los Angeles Times workflow

are classified as categorical as opposed to Boolean,
even through the only two levels in this variable were

“Yes” and “No,” which naturally correspond to True

and False. Both table did not have attributes that could

be considered ordinal data.

3.2 Wrangling tasks by journalists
I derive tasks in this project from the action codes

applied to each workflow from prior work. These were

referred to as actions, as opposed to tasks. Tasks imply

intention, but because this indirect observation study

did not include interviews with journalists, we cannot

make claims about intentions. This prior work gives an

auditable, reproducable record of the wrangling

sequences applied to the data from its raw form to its

final formats. This data provides a strong signal of

what wrangling tasks journalists perform and how they

accomplish them. Why these journalists did what they

did and how they did it is still an open question.

Part of the task abstraction contribution for this project

involves deriving tasks from these sequences of

actions. I substitute the original authors intention with

my own judgement from my experience as a journalist

and data wrangler familiar with Python and R. Actions

from prior work and the tasks derived in this project

share a many-to-one relationship, one tasks is

comprised of many actions. Thus, the process of

deriving tasks is simply segmenting consecutive

actions into semantically meaningful chunks. For each

task, I also recorded a snapshot of the intermediate

table representation as a benchmark for the wrangler,

myself, to achieve. Table 1 details each derived tasks

for both workflows but not in the order they occur in

the workflows.

In reproducing each workflow in OpenRefine and

Dataprep, I only consulted the task sequence, which

does not list the underlying actions. The task sequence

for each workflow is provided in Supplementary

Materials. It would be trivial to reproduce the exact

sequence of actions in each application. More can be

learned about the strengths and weaknesses of each

application by only specifying the desired state of the

wrangled data at the end of each benchmark.

The workflows I reproduced have been closely read at

least three times, first to analyze the workflow in prior

work and twice for each application. First, at least five

days passed between the same workflow using the two

different wrangling applications. Second, the

application-workflow order was also varied to further

counter balance the experiment design.

Figure 3: A subset of the wrangled data using in the workflow from

The Los Angeles Times. The high-level wrangling objective for this

data is to aggregate the key attribute and derive a performance

metric from quantitative attributes in the original data.

The task sequence derived from The Los Angeles

Times workflow has a two salient data wrangling

tasks. First, one of the first acts of wrangling was to

remove all variables from this dataset but five

variables of three data types: water supplier name

5

(categorical), the month and year of the reading (date),

and total water production in gallons (quantiative),

total water production in gallons for 2013 (quantitive),

and the percentage of total water production that was

used in residential zones (quantitative). Second, the

month variable, in the sense of variables in Tidy Data

[16], exists in two table columns. Water production

values for 2013 have their own column, while

production-month values for the remains years are

properly separated into two columns. This data quality

error, a structurally-spliced variable, is a difficult

issues to address with wrangling.

The Long-term Managed Care workflow concerns

converting a dataset intended for presentation into a

dataset intended for computation. This task sequence

highlights two important data quality issues addressed

by wrangling and one common wrangling task. First,

the raw data pivots upon plan name and county to

create a hierarchial encoding for total enrollments

numbers along the vertical position. Second, the data

also includes total numbers for each plan names and

for each county within a plan name as rows. Although

not a data quality issues, this workflow illustrates an

Aggregate Join (T9), adding the total enrollment

within a plan name as a separate column at the farthest

right column of the final-output table.

Task Description LMC CCS

T1 Extract value in column ✔️

T2* Reshape table ✔️

T3 Remove observations ✔️ ✔️

T4* Aggregate Join ✔️

T5 Deduplication ✔️

T6* Resolve entity names ✔️

T7 Derive variables ✔️

T8 Aggregate observations ✔️

T9 Remove columns ✔️

T10 Trim the Fat ✔️

Table 1: Tasks with asterisks denote tasks that prior work observed

being performed in both a within- and between-table context. LMC

refers to the workflow Long-term Managed Care, and CCS refers to

the workflow California Conservation Scores.

1 https://en.wikipedia.org/wiki/Prograph

4. Related Work
This analysis project is related to other work

performing usability analysis using the cognitive

dimensions of notation framework.

4.1 Cognitive Dimensions
In response to a lack of user interface design

methodologies grounded in the design activities of

user interface designers in the 1990s, Blackwell and

Green describe a cognitive dimensions of notation

framework [1]. Rather that positioning it as an analytic

method, cognitive dimensions of notation are a

framework of interface-independent discussion tools

for evaluating the cognitively-relevant features in user

interfaces and non-interactive notation.

Related work on usability analysis using this

framework mostly concern visual programming

languages. Although this framework is supposed to

extend to interactive devices, usability-analysis papers

incorporating cognitive dimensions often deal with

non-interactive notation, especially visual

programming environments. Green and Petre, 1996

[2] evaluate two commercially-available data flow

languages, Prograph1 and LabVIEW2. Today there is

still active support for the Prograph language, and

LabVIEW is still receiving active support from

National Instruments. This project is different from

related work by focusing on two wrangling

applications that fall within the category of direct-

manipulation interfaces.

4.2 Evaluation of wrangling applications
Related work in evaluating wrangling applications is

often done in the context of evaluating novel

wrangling tools or techniques by the designer/paper

authors. To the best of my knowledge, there does not

exist a systematic evaluation of existing wrangling

applications by a third-party.

To validate the Wrangler, Kandel et al. performed a

controlled user study comparing Excel to their

wrangling application in three tasks. Wrangler [7] is a

mixed-initiative user interface that drives an

underlying declarative transformation language

evaluated. In a user study to validate the usability of

the interface, researchers compared Wrangler to Excel

in three wrangling tasks: extracting text from a column

(T1), fill missing values, and table reshaping (T3).

While this project includes the same tasks, this

2 https://www.ni.com/en-ca/shop/labview.html

6

usability study took a more quantitive approach,

measuring time to completion and performing

ANOVA on the results of a post-study questionnaire.

This project takes a strictly qualitative approach to

comparing wrangling applications.

5 Methods & Tools
This analysis project conducts a usability analysis

based on the cognitive dimensions of notation

framework to evaluate two tools used by journalists

for data wrangling. This section includes an overview

of data wrangling tools with a more detailed

description of the two tools evaluated in this project:

OpenRefine and Google Cloud Dataprep.

All of these tools constitute direct-manipulation

interfaces. Hutchins et al. [4] define direct-

manipulation interfaces as systems where the user has

the sense of performing operations directly upon the

objects instead of through an abstraction

computational medium. All of these applications

incorporate a spreadsheet metaphor of the underlying

data structure into their interfaces to give the user the

impression they are directly manipulating the data;

however, the actual organizational structure of the data

on a user’s computer does not necessarily match the

structure on the screen. Example of wrangling

applications that are not direct-manipulation interfaces

include scripts, computational notebooks, and other

environments where the user is wrangling via a

programming language.

5.1 Overview of data wrangling tools
Within the category of direct-manipulation interfaces

for wrangling, we can divide all existing productions

into two categories. First, there are general purpose

data tools with wrangling features. Microsoft Excel3

is the general spreadsheet software by which all data

tools are invariable compared against. In the user study

conducted to provide an initial evaluation of Wrangler,

Excel was the baseline application [7]. It includes

features to pivot one’s data, which structurally

transforms the underlying data into a cross-tabulated

format. Google Sheets4 is a free, online, and cloud-

based spreadsheet application in the same product

category as Excel. It includes features to deduplicate

table rows that contain identical values for all

columns. Deduplication (T5) is a common, wrangling

task.

3 https://products.office.com/en-ca/excel

The second category of direct-manipulation interfaces

for wrangling are applications designed specifically

for wrangling. First, Trifacta Wrangling is an

interactive data cleaning application that can be run on

the desktop or in the cloud. It is the latest commercial

evolution of research on interactive data

cleaning/wrangling systems by researchers at Stanford

and University of California Berkeley in the early

2010s [7], [10]. For nearly all intents and purposes

relevant to the user, Trifacta Wrangler is Google

Cloud Dataprep is an instance Trifacta Wrangler

running on the Google Cloud platform. Second,

Tableau Prep is a desktop wrangling application that

includes a three-panel view of the data: a high-level

provenance graph of table transformation, a profiling

panel of dataset variables, and a traditional

spreadsheet/table view of the data being wrangled.

Finally, Workbench is a recent open-sourced, cloud-

based data cleaning platform.

5.2 OpenRefine
OpenRefine [5], also known as Refine, is one of the

oldest applications for wrangling data. The open-

source project has gone through previous names as it

has changed hands between various supporting

organizations. It was known initially developed and

known as Freebase Gridworks when it was under the

development of Metaweb Technologies, Inc in May

2010. It was renamed to Google Refine when Google

acquired Metaweb in July of the same year. In October

2012, Google ceased active support for the project and

it became known as OpenRefine [12].

Figure 4: The OpenRefine interface loaded with raw data from the

California Conservation Score workflow. Like all wrangling

applications, the interface is organized around a table view of the

data; however, more sophsticated visualizations are incorporated

into other parts of the interface.

The model for applying wrangling operations in

OpenRefine largely fit into an iterative subset-modify

cycle. Users begin by selecting all or a subset of the

4 https://www.google.com/sheets/about/

https://products.office.com/en-ca/excel
https://products.office.com/en-ca/excel
https://www.google.com/sheets/about/
https://www.google.com/sheets/about/

7

data and transforming the selected portion. The

predominate organizational principle in OpenRefine is

a distinction between rows and records. A row in

OpenRefine corresponds to a row in a table; however,

a record refers to multiple, sequential rows with an

index key that exists within the table.

Figure 5: OpenRefine incorporates dynamic queries to filter the

dataset through a feature it calls Facets/Faceting. The Numeric Facet

(top left) shows a histogram of quantitative column values, and the

Timeline Facet (top right) provides the same function for date

column values. Both of these features filter the data through interval

selection. The Scatterplot Facet (bottom) supports filtering based on

two variables. This image comes from the OpenRefine Wikipedia,

as my installed version of the application was never able to display

the plotted data.

OpenRefine incorporates visualization into its

interface through its Faceting feature. “Faceting” in

open refine refers to interactive visualizations to

support dynamic queries coordinated with the table

representation of the data. These filter parameters can

be combined with any other filter parameter to further

refer the filters applied to the data. Figure 5 details the

types of visualizations supported in Faceting. Textual

facets display the unique values in a column sorted

alphabetically with counts of the unique occurences on

these items, and this type of facet does not incorporate

visualization. Users can select any combinations of

values to filter the dataset. Numeric Facets are

essentially histograms enabled with interval selection

to support dynamic queries. The column must be

entirely comprised of quantitative data for this facet to

work. The Timeline Facet provides a similar view of

the distribution for column comprised of data objects.

While the previous Facets only visualized one column

of data, the Scatterplot Facet visualizes two columns

of quantitative data. However, this feature never

worked properly in the course of this analysis. The

OpenRefine Wiki also does not offer any support for

troubleshooting this issue.

5.3 Google Cloud Dataprep
Although Google Cloud Dataprep is branded as its

own application, it is actually an instance of Trifacta

Wrangler running on the Google Cloud Platform.

Trifacta Wrangler/Dataprep is also the commercial

descendent of the original Wrangler interface by

Kandel et al. [7]. Thus, that particular application has

been excluded from this analysis. I assume that the

original authors would encourage journalists to use

Dataprep or Trifacta Wrangler instead of the original

Wrangler application for actual data wrangling work.

In this analysis, I will refer to the shared interface as

Dataprep even if it is identical to Trifacta Wrangler

and extremely similar to the original Wrangler.

Like OpenRefine, Dataprep is a GUI application for

wrangling data structured around a spreadsheet/table

view of the data.

The only substantial difference between the Trifacta

Wrangler and Dataprep seems to be the underlying

computer architecture. Dataprep’s architecture uses

services from Google, such as their Cloud Storage

product for the underlying raw data. But these

architectural differences between these two products

have a subtle but trifling impact on the usability of the

user interface, which is the primary scope of this

project. For example, exporting the final output of the

Long-term Managed Care on Google Cloud’s shared

infrastructure took an average of 5.5 minutes (over

eight trials) even though the output file is only 267 KB.

But system level concerns about speed or data

scalability are outside the scope of this project.

Figure 6: The Google Cloud Dataprep interface loaded with raw data

from the Long-term Managed Care workflow. Dataprep

incorporates more visualization into its interface than OpenRefine

and the final wrangling output contained fewer errors.

Dataprep possess one unique feature that distinguish it

from other wrangling applications. It suggests possible

transformation for the user to apply to the dataset

based on previous data transformations using a

proprietary recommendation algorithm. Similarly, it

will suggest transformations based on sections of text

8

high-lighted by the user. Interacting directly with a

table is a novel interaction technique for specifying

table transformations. The status quo for creating

transformation specification is by either navigating

through menu-items and toolbar buttons or specifying

transformation in the underlying the transformational

language.

While OpenRefine leverages visualization in a way

that primarily supports filtering and secondarily

supports exploration. Dataprep incorporates

visualization for visual data profiling through two

idioms: color stripe, figure 8, and visualizing column

distributions, figure 9. Both of these idioms are highly

relevant to cognitive dimensions of the interface while

performing wrangling tasks and are discussed in depth

in the analysis section.

6. Analysis
This section discusses how cognitive dimensions

apply in the process of data wrangling by considering

the most salient dimensions each on in turn, situating

it in the context of other domains for illustrative

purposes, and comparing and contrasting OpenRefine

and Dataprep along these dimensions. The ultimate

aim of this section is not to provide an exhaustive

examination of cognitive dimensions in wrangling but

to “coax out” convergent design features by compare

the two applications with discussion grounded in this

cognitive dimensions framework. Thus, dimensions

that illustrate significant differences and similarities

between the two interfaces comprise the majority of

the discussion in this section.

6.1 Error-Proneness
According to Blackwell and Green [1], error-

proneness in a notation aims to capture areas where a

design features lead to systematically occuring errors,

especially those where the notation does not offer

protection from committing them. This class of errors

excludes simple mistakes and slip-ups, and usability

analyses drawing on the cognitive dimensions

framework note that the distinction between the two is

not clear [2]. While Blackwell and Green do not

elaborate on methods for differentiating between the

mistakes and serious errors, usability studies that use

quantiative methods to identify statistically significant

occurrence of errors may be one approach.

One way to elucidate error-proneness in wrangling

interfaces is to consider mismatches across the Gulf of

Execution, which Hutchins et al. [4] describe as the

distance between the thoughts and goals of the user

and the commands specified to the system. When this

distance is zero, then system appears to behave

entirely as expected, and errors constitute occasions

when the system appears to act in ways other than what

the user intended. These type of errors naturally break

into two categories: false positives and false negatives.

Table 2 breaks down these two errors in the context of

removing observations from a dataset.

 Observation

was deleted

Observation

was retained

Observation
should be

removed

Success False
negative

Observation
should be

retained

False
positive

Success

Table 2: Errors in the wrangle process can often surface from

mismatches between what the user intends to accomplish and the

specification of the notation.

Because each workflow includes the raw data and the

final, wrangled output, there exists a “ground truth”

wrangling results to compare the end product of

wrangling with both direct-manipulation applications.

Errors in the output reproduced by the applications

then constitute discrepancies between my output and

that produced by the journalists. Supplementary

Materials contains one example script of this diff

produced in OpenRefine and Dataprep. While it is

possible for our reproduced wrangling to find data

quality issues undiscovered in the original workflow,

this was the case for neither of the two workflows

considered in this analysis; however, prior work did

discover errors in other workflows.

One source of error-proneness in wrangling

applications occurs in a common secondary notation,

regular expressions. Errors that result from regular

expressions inevitably result from an imprecise

expression manually entered by the user. These errors

can occur in any domain, not just data wrangling. But,

both Dataprep and OpenRefine incorporate design

features to mitigate these errors since the specification

of regular expressions is central to accomplishing

many common wrangling tasks, including T1 and T3.

9

Figure 7: This figure illustrates extracting column values in the

Long-term Managed Care workflow using Dataprep. With

thousands of total columns, this process can be extremely error

prone. It is up to the interface to guard against this kind of error even

though it revolves around the use of secondary notation.

Error-prone behavior in regard to these two tasks

involves not checking all the variables or observations

that match the regular expression and all those that do

not match. This sort of exhaustive search is the only

way to ensure that the distance between what the user

intended and what was specified in the notation is zero.

The time complexity of this operation is linear to the

size of the input. While such complexity is desirable

for computational processes, this process is strictly a

human activity become prohibitively expensive when

the dataset contains hundreds of observation. Design

features that increase visibility can aid in mitigating

these errors and section 6.4 elaborates on them further.

6.2 Secondary Notation
The dimension of secondary notation refers to

supplementary information separate from the official

syntax [1]. In the usability analysis of programming

languages secondary notation refers to comments and

indentation. These features non-essential components

intended to assist the user in completing a task, and

wrangling applications also contain many of these

supplementary features.

If we are to interpret the data order in rows and

columns as “official syntax” in the context of user

interface evaluation, secondary notation in wrangling

applications incorporate three forms of secondary

notation into their interfaces: regular expressions,

menus, programming languages, and visualization.

Regular expressions are a concise specification for a

search pattern in textual data often used in wrangling

for extracting components of values in categorical data

(T1) and specifying which rows to remove based on

column values (T3). OpenRefine also allows the user

to write column-extraction or row-matching

specification in Python or General Refine Expression

Language (GREL). Finally, both OpenRefine and

Dataprep incorporate visualizations beyond a large

table display of the data being wrangled into their

interface.

Within the category of secondary notation

visualization constitutes redundant recoding, a

channel of information that is “separate and easier

channel for information that is already present in the

official syntax” [3]. In my analysis the presence of

visualization had a strong effect on error-proneness

when it came to accomplishing two tasks: extract

value from column (T1) and remove observations

(T3).

Although regular expressions, menus, and

programming languages are often used in wrangling

interfaces to match table rows to filter and for

extracting values from columns, the presence of

visualization in Dataprep had the greatest impact on

reducing error-proneness. The final analysis using

Dataprep caught errors missed in OpenRefine because

they were flagged during wrangling with the data-

profiling visualizations in Dataprep. This is largely

due to the color stripe present at the top of each

column, as illustrated in figures 7 and 8.

Figure 8: Color stripes such as the one picture above adorn the top

of each column in Dataprep.

In terms of what-how-why analysis, this color stripe

idiom visualizes the proportion of data quality

categories in an individual column with stacked line

marks to encode proportion and color to encode

category. There are three data quality types: valid,

which signals the column values match the column

data type specified by the user; mismatched, such as

having alphabet characters in a column of quantitative

variables; and missing values, often denoted as NULL,

NA, or left as an empty string. These are especially

useful for finding data quality issues.

10

Figure 9: Beneath the color stripe, shown in figure 8, the bar charts

and histogram charts provide another useful secondary notation for

identifying data quality issues in Dataprep.

Another useful visualization that didn’t directly lead to

finding bad rows but gave me a sense of confidence in

the data were bar charts and histograms of the column

distribution, as show in figure 9. In terms of what-

why-how analysis, both of these idioms visualize the

distribution of values within a column using line

marks along the vertical position and position along

the horizontal column to identify which values deviate

from “normal.” In histograms, the keys are binned

ranges within the underlying data and in bar charts the

keys are the unique levels of the categorical data. Both

visualizations hope to signal deviations in the data

from “normal,” and require domain expertise to

distinguish valid and invalid values.

Histograms may be able to detect a nefarious data

quality issues that this analysis project did not address

because it was absent from the two workflows. A

common data quality issue involves values within the

same column on different scales of magnitude. For

example, a table value may encode one million dollars

as “1,000,000” or it may denote it as “1” with it being

implied that the values are in the millions. A bimodal

histogram may signal that this type of error exists in

the underlying data, and domain expertise is necessary

to confirm that such values are actual errors.

6.3 Provisionality
Blackwell and Green define provisionality as a one’s

commit actions made or a notation system’s ability to

support speculative operations or “what-if” games [1].

Although not a notation, the shades of provisionality

can best be explained by different types of writing

instruments. The marks made by pencils and dry-erase

markers have a high degree of provisionality because

they can be easily erased, but marks made with

permanent markers, pens, and tattoo guns have low

provisionality because they cannot be easily erased.

In wrangling applications, provisionality occurs in a

system in two ways: previews and undo. First, a

system can preview to the user the results of a

transformation. Second, the system can provide easy

ways to recover from actions committed, much like a

pencil with an eraser. Previewing is an important

feature for operations that address both rows and

columns. Both OpenRefine and Dataprep support

preview and an undo features. The fact that both of

these interfaces have converged upon these features

signals that they are important in wrangling

applications.

Related work in data wrangling that evolved into

Dataprep supports previewing. Wrangler [7] supports

provisionality in both tasks through juxtaposing the

table before and after the transformation with color

linking and transparent overlays to preview the results.

The value extraction task (T1) always incorporates

secondary notation as specification of the extraction

method. Hence, column transformation previews also

enable provisionality of this other notation. This

feature is essential when specifying extraction with

Regular Expressions in both wrangling applications

because it guards against the error-proneness of this

notation.

Provisionality can greatly assist in wrangling tasks

involving table transformations, especially when

extracting values from a column (T1). Both

OpenRefine and Dataprep generate a provisional

column filled with the output of the extraction method.

Every change in the extraction specification updates

this preview column, and committing the operation is

essentially making this column a concrete variable of

the data.

Figure 10: Preview features of the output from column extraction

(T1) in OpenRefine reflect with a high degree of provisionality. In

11

this example of wrangling in the LMC workflow, the application is

extracting the date of a report from a column with mixed variables:

date, plan name, and plan type. The same feature is illustrated in

Dataprep in Figure 7.

While both OpenRefine and Dataprep support

previewing, they implement this feature differently, as

figures 7 and 10 illustrate. OpenRefine generates a

preview modal dialogue window. Dataprep situates a

column within the table display of the data, color codes

the column that is the source in blue and the preview

column in yellow and highlights the match in the

source column. The ability to preview the effects of an

action is one way to increase provisionality and

recovering from a committed action is another

method.

Both OpenRefine and Dataprep also support

recovering from an actual with an undo feature

situtated within a list detailing the sequences of table

transformations applied to the raw data. Dataprep

supports this application a little better than

OpenRefine. While both applications enable the user

to edit a previous table operation, delete a

transformation, and reorder transformations. Dataprep

supports these operations within the recipe panel.

OpenRefine supports this through directly editing the

JSON file containing, which is a secondary notation

of the system. Dataprep allows the user to temporarily

disable individual transformations but not delete them

from the history. OpenRefine does not support this

since JSON does not support comments. A user may

copy the specification for the table transformation in

another application, such as Notepad. But this strategy

still constitutes deletion in the wrangling application.

Figure 11: Both applications record an auditable history of the table

transformations applied to the raw data. The left figure shows

history in OpenRefine and the right figure show history, also known

as recipes, in Dataprep. This features increase the provisionality of

the interface by not forcing the user to commit to previously

committed table transformations.

Both applications could further increase the

provisionality through this feature by supporting

branching table transformation sequences. The

wrangling provenance record in current use from both

applications is strictly linear. Longer branches of

what-if wrangling exploration could be reported by

supporting a bifurcate actions in this history that

allows the user to operate down a separate branch.

Such a feature is similar to the speculative

development avenue that are currently supported in

software development projects using source code

management tools such as SVM or Git. This additional

feature would come with the tradeoff of increasing the

number of secondary dimensions, and wrangling users

would have to learn another subcomponent in a system

that already uses many subcomponents.

6.4 Visibility
The cognitive dimension of visibility, also called

visibility and juxtaposability, refers to how well

system components can actually be seen by the user

[1]. Before describing visibility in data wrangling

applications, it is illustrative to briefly describe how

usability analysis of notation in other domains

interpret this dimension. In the domain of

programming environments, Green and Petre describe

a system with maximum visibility as one where every

part of code is simultaneously visable [3]. For

computer programs that are small enough, visibility is

not an issue; however, as the size of the software

project increases, visibility decreases, obviously.

As with programming environments, visibility in

wrangling environments has the same inverse

relationship with the environmental input. Where the

dimensions of the tabular datasets are to data

wrangling as lines of code are to computer

programming. In wrangling, being able to view the

sections of the data currently being transformed, and

even those section not transformed, is the major issue

of visibility. One obvious and ubiquitous interaction

technique for overcoming visibility limitations with

large datasets is to utilize scrolling. When the number

of columns and rows of a table exceed the “real estate”

afforded by the computer screen, then many wrangling

applications and those that support wrangling utilize

vertical and horizontal scrolling, respectively.

12

Figure 12: Dataprep uses color highlighting to denote rows of the

table that will be removed with the implementation of the pending

table transformation. While OpenRefine has the option of viewing

either all the removed rows or all the retained rows, Dataprep

situates the rows to be removed in the same view as the rows to be

retained. However, the user can also specify to view just the rows to

be removed to increase the visibility of the system.

Visibility is especially important when filtering rows

(T3) to give the user confidence that the

transformation is operating upon the rows they want

and not on the ones they want to be retained. Both

applications show the rows that will be removed and

the rows that will not be removed. However,

Dataprep’s implementation of this feature is superior

because columns to be removed are situtated within

the table along with the rows that will be retained.

OpenRefine only allows the user to view one or the

other. Thus confirming that the system is removing

exactly what you intended it to remove in Dataprep

requires less human memory than in OpenRefine,

which concurs with the rule of thumb in Visualization

Analysis and Design that “Eyes Beat Memory” [9].

Visibility also has a difficult-to-access relationship

between visualization as a secondary notation.

Visualization can effectively “show” users a

dimensional subset of their data in a much smaller

space. While scrolling through a column of thousands

of values is one way to see all the data, most people

would probably prefer viewing a histogram of the

distribution within the column, depending upon the

task.

Visualization for wrangling also addresses a common

problem of how to view a large dataset when screen

“real estate” is limited. Related work has addressed

this issues specifically in queries on large datasets.

VisDB [8] visualizes the query specification process

in a database, and compresses each database record as

one pixel to represent a large table of data on one

screen. However, visualization intervention in the

wrangling applications considered in this project

attempts to visualize the schema of a table instead of

each individual data point.

The book Visualization Analysis & Design [9]

classifies three design choices for reducing the amount

of data shown within one view and thus can also

address the common problem in data wrangling. First,

filtering can reduce the amount of data presented.

Second, aggregation can reduce the size of the data by

combining many observations into one. This design

choice effectively coarsens the dataset. Finally,

embedding describes providing an additional view of

the data triggered by the user interacting with the

dataset. Elided data, where some data is filtered and

others are summarized, is one example of embedded

data. The two wrangling applications considered

largely utilize aggregation design choices through bar

charts and histograms, elaborated upon in section 6.2

on secondary notation.

One short coming of filtering through Faceting in

OpenRefine is that there is no way to change the

granularity of the visualization. For example, the

Long-term managed care workflow requires the user

to filter the data for just summer months in 2013, 2015,

and 2016. When attempting to accomplish this task

with the Timeline Facet, the user isn’t able to select

the specific month. The feature does not support

semantic zooming to give the user the control they

need to accurately specifying the transformation.

Visualizations of the distribution of values within a

column can assist in locating data quality issues that

were not included in the two workflows analyzed but

were present in other workflows from prior work.

Because much public data originates from manual data

entry into a form or even a spreadsheet, data quality

issues can result from human error. Both bar charts of

categorical data and histograms of quantitative data

can support the task of finding values that do not

conform to the trend of the data in general.

The visibility of the data being operated upon becomes

crucial when accomplishing tasks T1 and T3 as it can

leads to errors characterized by mismatches between

what the user intends and what is specified in the

systems notation. Section 6.1 elaborated on this issues

and error-proneness in wrangling applications, in

general. Both applications implement a preview

feature that provide an interim representation of the

13

underlying dataset if the table transformation currently

being considered is executed. This feature is a clear

example of leveraging provisionality in an interface

and is further described in section 6.3.

In Dataprep, only 34 table rows can be viewed at one

time. Column widths can vary from table to table.

LMC is the highest dimensionality dataset in this

project with six columns at the conclusion of the

wrangling processes, and this table just barely fits in

the window allotted. Hence, only a small subset of data

is directly visable to the user at any given moment.

In pursuit of T3, remove observations, the visibility of

which table rows are removed and which are retained

has a significant impact on error-proneness of a

wrangling application. Dataprep possesses a unique

feature that makes it superior to OpenRefine when

removing rows in this task. Dataprep allows the user

to toggle between viewing table rows that match the

filter criteria and will be removed and those that do not

match and will be retained. OpenRefine only displays

the table rows that will be removed, placing the onus

on specifying what is retained on the user’s memory,

hence increasing the cognitive demand of the task.

6.5 Other Dimensions
There are few cognitive dimensions not worth

discussing in much detail within the context of two

direct-manipulation interfaces.

By design, direct manipulation interfaces have high

degrees of progressive evaluation and closeness of

mapping. The ability for current progress to be

checked at any time is progressive evaluation [1].

Direct-manipulation interfaces provide a high degree

of this dimension by default. At any stage of wrangling

in both OpenRefine and Dataprep, the user is able to

see their current progress. Wrangling in a

programming environment has a lower degree of this

dimension. In prior work studying wrangling

notebooks from journalists, users frequently inspected

the current state of the table after a transformation

operation, which was coded as peek at data. Likewise,

interfaces that facilitate wrangling through

interactions with a table representation of the data

enjoy a high degree of closeness of mapping, the

closeness of the representation and the domain [1].

Viscosity is defined by Blackwell and Green [1] as the

amount of effort necessary to perform a single change.

In chemistry, viscosity is an expression of the

resistance to flow of a system under stress, and the

cognitive dimensions framework repurposes this term

to mean how resistant a system is to changes. When

applied to data wrangling, it means the amount of work

performed to transform a table into a particular

structure. This dimension manifests itself when

removing many columns from the dataset, which falls

under Trim the Fat (T10). Both interfaces converge on

a way to select multiple columns for removal at one

time. This feature is extremely convenient as the

California Conservation Score workflow requires the

user to remove more than 30 columns from the raw

data. Removing columns individually would

constitute an unnecessary amount of effort to perform

a single task, which is remove all unnecessary data

variables.

7. Discussion and Future Work
In the future, it may prove fruitful to widen the scope

of wrangling applications considered Tableau Prep,

Workbench, and Microsoft Excel. Although software

products from the data visualization company Tableau

are not free by default, the company provided

journalists with complimentary licenses of Tableau

Prep, its data wrangling application, since 2018 along

with Tableau Desktop, its flagship visualization and

analysis application [14]. Like Dataprep/Wrangler

Trifacta, Tableau Prep also uses univariate

visualization idioms to profile the underlying data for

error detection and provides a table view of the dataset

being wrangled. However, this product has a unique

network view of wrangling provenance. Workbench is

another wrangling product especially relevant to

journalism because it was built for journalists in mind.

It was initially launched in 2017 as an “integrated data

journalism platform that makes it easy to assemble

data scraping, cleaning, analysis, and visualization

tasks without any coding” [17]. While it appears to

follow similar data wrangling conventions to

OpenRefine and Dataprep, a more in-depth analysis

may shakeout its strengths and weaknesses in this

crowded field of data wrangling products. It has been

said that 90% of data journalism is done in Excel [2].

This product’s ubiquity may be due to its default

presence on many newsroom computers [13].

8. Conclusion
In the end, this report that OpenRefine and Dataprep

share much of the same core functionality; although

Dataprep use of visualization lead to less error-

proneness in process and high-quality data at the

conclusion of the process. Wrangling itself can be a

highly error prone activity. But according to the

14

cognitive dimensions framework, we cannot simply

decrease the error-proneness of a system, each

dimension is intimately connected to other

dimensions. Thus, incorporating visualization as a

secondary notation, increases the complexity of the

system but the user gains the ability to see potential

data quality issues that were previously only

accessable from manually scrolling through the table.

Increasing the provisionality of the interface, both in

previewing the results of a table transformation and

recovering from committed results is another “knob”

that the tool builder can tweak to decrease error-

proneness.

This analysis project only considered two direct-

manipulation applications that incorporate

visualization and incorporating more wrangling

applications and more tasks will provide a better

understanding of the tradeoffs inherent in designing

tools for data wrangling.

Bibliography
[1] A. Blackwell and T. Green, “Notational

Systems—The Cognitive Dimensions of

Notations Framework,” in HCI Models,

Theories, and Frameworks, Elsevier, 2003, pp.
103–133.

[2] Global Investigative Journalism Network,

“Nils Mulvad - Excel is 90% of data
journalism - YouTube,” YouTube. [Online].

Available:

https://www.youtube.com/watch?v=aahUKhuB
9Bw. [Accessed: 06-Dec-2019].

[3] T. R. G. Green and M. Petre, “Usability

Analysis of Visual Programming
Environments: A ‘Cognitive Dimensions’

Framework,” J. Vis. Lang. Comput., vol. 7, no.
2, pp. 131–174, Jun. 1996.

[4] E. L. Hutchins, J. D. Hollan, and D. A.

Norman, “Direct Manipulation Interfaces,”
Hum.-Comput. Interact., vol. 1, no. 4, pp. 331–

338, 1985.

[5] D. Huynh, Open Refine. 2012.
[6] S. Kandel et al., “Research Directions in Data

Wrangling: Visualizations and Transformations

for Usable and Credible Data,” Inf. Vis., vol.
10, no. 4, pp. 271–288, Oct. 2011.

[7] S. Kandel, A. Paepcke, J. Hellerstein, and J.
Heer, “Wrangler: Interactive Visual

Specification of Data Transformation Scripts,”

in Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, New

York, NY, USA, 2011, pp. 3363–3372.

[8] D. A. Keim and H.-P. Kriegel, “VisDB:
database exploration using multidimensional

visualization,” IEEE Comput. Graph. Appl.,

vol. 14, no. 5, pp. 40–49, Sep. 1994.
[9] T. Munzner, Visualization Analysis and

Design, 1st ed. A K Peters/CRC Press, 2014.

[10] V. Raman and J. M. Hellerstein, “Potter’s
Wheel: An Interactive Data Cleaning System,”

in Proceedings of the 27th International

Conference on Very Large Data Bases, San
Francisco, CA, USA, 2001, pp. 381–390.

[11] J. Stray, “Network Analysis in Journalism:

Practices and Possibilities,” Proc KDD, p. 8,
Aug. 2017.

[12] Subscribe, “From Freebase Gridworks to

Google Refine and now OpenRefine.” .
[13] S. Sunne, “Diving into Data Journalism:

Strategies for your newsroom,” American

Press Institute, 09-Mar-2016. .
[14] S. Teal, “Journalists: Now Tableau Prep is free

for you,” Tableau Public, 26-Apr-2018.

[Online]. Available:
https://public.tableau.com/en-

us/s/blog/2018/05/journalists-now-tableau-

prep-free-you. [Accessed: 06-Dec-2019].
[15] M. Tulio Pires, “Preparing data,” Data

Journalism and Visualization with Free Tools,

21-Oct-2019. [Online]. Available:
https://journalismcourses.org/course/view.php?

id=44§ion=3.

[16] H. Wickham, “Tidy Data,” J. Stat. Softw., vol.
59, no. 1, pp. 1–23, Sep. 2014.

[17] “Data Journalism Made Easier, Faster, and

More Collaborative,” Medium, 07-Jul-2018.
[Online]. Available:

https://medium.com/@Workbench/data-

journalism-made-easier-faster-and-more-
collaborative-e33081bf0080. [Accessed: 06-

Dec-2019].

15

Supplementary Materials
California Conservation Score Task Sequence

1. Format Display

Format Tables to display: at most 500 columns and floats have two significant figures.

2. Trim the fat

Import uw_supplier_data100516.xlsx but only keep the columns with supplier name, month, total water

production in gallons, total water production in gallons in 2013 and residential water usage. Note: the total

records in this table should be 10,936

3. Filter dataset by data range

4. Convert column type

Work the month variable into a filterable format. In the analysis in Python by the Los Angeles Times, they

converted it to a string.

5. Remove the rows

Keep only unique observations from three summer months (June, July, and August) in 2015 and 2016.

6. Remove duplicates

Note: the total records in month table should be 2,425

7. Remove incomplete data

Eliminate any suppliers from the month table dataframe who have fewer or greater than six months of data

with those labels.

Hint: There are 19 incomplete suppliers

At the end of this process there should be 2,334 records.

8. Aggregate dataset

Make a new table from the month table, it could be called summer table, that groups and sums the total

water production for each summer.

Hint: The between-table context way to do this is by separating into many tables, and create separate tables

summing the total water production gallons for 2015, 2016, and 2013, grouped by supplier name.

Compare the total number of records for each new table. It should be 389 for each. Count the total number

of records in summer table. It should be 389 records for each sub table.

9. Derive percentage change

Derive the change in savings between 2015 and 2016 in the summer table as a new variable. In order to

calculate this measure, you'll have to derive two intermediate variables, the percent change of summers

2015 and 2016 versus the baseline of summer 2013 as a new variable, and the savings change in summer

table. The final product should look like this.

Optionally, rank cities that have regressed the most towards their 2013 baseline. I would consider this

analysis, however.

10. Calculate mean

Calculate mean residential water usage in 2016 for each supplier in summer table. Calculate the average

16

monthly water usage per person (R-GPCD) in each district for the summer of 2016 as a new table called

summer 2016 means.

11. Aggregate join

Aggregate join average monthly water usage per person (R-GPCD) on summer table just for 2016.

Join those water usage average to our combined table called summer table

Create a summary statistic to judge how many districts regressed in summer 201

12. Calculate performance metric

Calculate a "Conservation-Consumption Score" that adjusts the savings change by the amount of water

usage to surface the high-usage districts that regressed the most. Add this value to summer table.

Look at the top ten districts by this score

13. Export the table

17

Long-term Managed Care Sequence

1. Remove Upstate Total rows

Remove Upstate Totals

2. Extract date
Extract the report month and year

3. Extract Plan type
Extract the plan type

4. Extract Plan Name
Create a plan name variable

5. Find and remove all junk rows:
Remove the many junk rows with variables in plan name about:

a. Report dates
b. Plan names
c. Notes about the plan
d. BY PLAN
e. Statewide Totals
f. Plan totals

6. Resolve plan names

Resolve plan name entities

7. Tidy the dataset
Transform the dataset into a true Tidy dataset and rename the columns

8. Calculate plan totals per month as a new variable
Calculate total enrollment by plan name, added as new variable. This is done by aggregate join.

9. Remove rows with missing county
These have the provider name WELCARE.

