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Abstract 
Despite many commercially available tools that 

support or are designed explicitly for data 

wrangling, there exists no systematic evaluation of 

the strengths and weaknesses of these tools. This 

analysis project for CPSC 547 Information 

Visualization evaluates two popular and actively-

developed wrangling tools, OpenRefine and 

Dataprep. By reproducing the wrangling processes 

conducted by journalists originally using 

idiosyncratic scripts written in Python and R on 

real-world data identified in prior work, this 

project is able to compare and contrast the 

usability of both applications in the context of real-

world data. This usability analysis is based on the 

cognitive dimensions of notation framework, a 

user-interface independent set of tools designed 

explicitly to facilitate such comparisons. In the end, 

this report finds that OpenRefine and Dataprep 

share much of the same core functionality; 

although, Dataprep’s use of visualization leads to 

less error-proneness in the overall process and 

higher quality data its conclusion. 

1. Introduction 
This analysis project aims to reproduce the wrangling 

process from two data journalism projects where the 

journalists wrangled their data with scripts and 

computational notebooks written in different 

programming languages. This small but active group 

of data journalist are proficient in many of the 

computational tools and statistics techniques of data 

science; however, they constitute a minority within the 

population of all journalists who are increasingly 

looking to enhancing their reporting and tell stories 

with data. GUI-based, direct-manipulation wrangling 

interfaces that do not require the user to write any 

computer code thus have the potential to make data 

available to more journalists. 

Data preparation and wrangling is a well-known, 

acknowledged step in data journalism. The conference 

on Computer Assisted Reporting (CAR) holds 

workshops and tutorials for professional journalists to 

sharpen their data wrangling skills in R, Python, and 

OpenRefine. University journalism departments offer 

courses on data journalism and visualization also 

incorporate a module on data cleaning, preparation, or 

wrangling in the syllabus. 

Journalists are an interesting sub-group to study in the 

context of data wrangling because this user group is 

exposed to a variety of data types and domains. One 

data journalist may deal with both structured and 

unstructured data from domains as diverse as civics, 

biology, climatology, and social sciences. Also, 

journalists often publish their analysis code and data 

on public code repositories, such as GitHub. This 

represents a rich data source on wrangling that was 

utilized in prior work that this project builds upon. 

2. Domain Background 
This analysis project focuses on applications that 

leverage visualization in the domain of data 

wrangling. 

2.1 What is data wrangling? 
Data wrangling, also known as data munging, is not as 

much an individual task as a process of iterative 

exploration and transformation that enables analysis 

[6]. This process includes many well-known, 

overlapping data tasks such as: cleaning, reshaping, 

integrating, integrity inspection, transforming, 

restructuring, and tidying. While other disciplines of 

computer science have developed fully automated 

approaches to many of these same tasks, wrangling 
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differentiates itself by its unguided, exploratory 

nature. Hence, wrangling is especially applicable to 

journalist who obtain datasets through leaks or 

freedom of information requests without a clear 

picture of its potential applications or existing data 

quality issues. 

Wrangling is often implemented in single-use scripts 

of sequential computer code or through manual table 

transformations. Wrangling is often done in GUI-

based applications, such as Microsoft Excel, or as 

scripts written in a computer programming language. 

These wrangling scripts are often written in 

programming languages such as Python, Perl, or R. A 

script usually is only applicable to one wrangling 

processes with a few individual datasets. Hence, the 

initial cost of programming a script cannot be 

amortized across different datasets even though many 

of the lower level table transformation may be the 

same. Wrangling in an application is often tedious, 

when doing specific wrangling tasks in a general 

purposes spreadsheet application [6]. 

In 2019, there exists many commercial and open-

source tools capable of wrangling data. Generally 

speaking, these tools can be divided into two 

categories: tools intended specifically for data 

wrangling and general-purpose data tools with 

wrangling features. This analysis only compares 

OpenRefine and Google Cloud Dataprep, which are 

two applications specifically for wrangling. These are 

the only tools under consideration in this project 

because they were recommend for advanced data 

cleaning in the course Data Journalism and 

Visualization with Free Tools [15]. This massive 

online open course (MOOC) is organized by the 

Knight Center for Journalism in the Americas and the 

Google News Initiative. While this course also 

addressed some data wrangling tasks in Google 

Sheets, these tasks were mainly trivial compared to the 

kinds of issues addressed with OpenRefine and 

Dataprep. 

2.2 Prior Work 
This analysis project builds off of previous research I 

conducted over a four-month period in the summer of 

2019. I analyzed the workflows of data journalists in 

the wild with a particular eye towards how this user 

group wrangles data. In this artifact-mediated indirect 

observational study of data wrangling in data 

journalism analyses, I performed thematic analysis on 

50 collections of computational notebooks and 

programming scripts from 33 journalists at 26 news 

organizations. This iterative process of open and axial 

coding resulted in a hierarchial taxonomy of data 

wrangling actions and observations that includes 131 

codes.  

 

2.3 Previously Identified Workflows 
From this prior work, I utilize two artifacts in this 

analysis project: the original raw datasets used by 

professional journalists and the record of table 

transformations applied to these datasets. Collectively, 

these are referred to as workflows. This analysis 

replicates two data wrangling workflows from 

professional journalists. based on cleaning real data on 

enrollment figures for long-term managed care plans 

in New York State at The New York Times and the 

other on water usage statistics following a years-long 

drought by The Los Angeles Times.  

The workflow Long-term Managed Care (LMC) 

follows a tutorial taught by Sarah Cohen, then an 

assistant editor for computer-assisted reporting at The 

New York Times and adjunct professor at Columbia 

University. This data has also been used to teach 

advanced data cleaning to journalists as part of a data 

journalism class at Columbia in 2015 and at the 

Computer Assisted Reporting (CAR) conference in 

2016. This workflow wrangles a single table of 

Medicaid long-term managed care reports from New 

York State, and presumably comes from an actual 

wrangling activity conducted at The New York Times. 

Cohen mentions the purpose of this activity is to 

quickly compare companies on growth and size for 

further investigation using traditional reporting 

methods.  

  
 

Figure 1: Raw data (left) and its final, wrangled output (right) in the 

Long-term Managed Care (LMC) workflow.  

It is just a coincidence that the Long-term Managed 

Care (LMC) workflow comes from a news 

organization on the eastern coast of North American 

and the second workflow comes from a news 

organization on the western coast. In Oct. 2016, the 
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Los Angeles Times published an investigation on 

county water usage in California after the state 

government rescinded a mandate restricting water 

usage. California is a state in the U.S. that suffered 

from years-long drought peaking between 2013 and 

2015. Reporters Matt Stevens and Ryan Menezes 

further investigated one county that stood out from the 

rest of the data. This article is an example of the most 

common genre of data journalism article seen in prior 

work: articles that compare multiple entities along a 

common performance metric. Often, the stories in this 

kind of data are the outliers, as was the case with 

Stevens and Menezes’s reporting. 

3 Data and Task Abstraction 
This analysis project derives domain-specific and 

abstract tasks and data from prior work performing 

qualitative analysis on records of how professional 

journalists wrangle their data “in the wild.” Section 5 

on methods and tool elaborates on this prior work.  

3.1 Raw data wrangled by journalists 
The data used in this project is the same raw data used 

by journalists. This data was collected from 

repositories made publically available in conjunction 

with published articles. The raw data itself is checked 

into the repository instead of providing instructions on 

how to obtain it from its original source. This posterity 

measure ensures that this raw data will remain 

available for years to come.  

These two workflows were selected because the data 

they wrangle balances each other well. The New York 

Times workflow deals with mostly categorical data 

that exists in a pivot table in its raw form. The 

workflow from The Los Angeles Times deals mostly 

with quantitative data and more quantitative variables 

derived from those in the raw data. While journalists 

occasionally work with network and tree data [11], this 

analysis project only considers simple flat tables 

because it was he most common abstract data type 

used in prior work. 

The raw data used by The New York Times workflow 

comes compiled from multiple Excel documents 

obtains by reporters. This dataset was selected for this 

project because it contains mostly categorical data. 

This raw table data consists of five attributes and 3,782 

items. 

• Plan name (categorical): The name of the 

healthcare plan. This attribute constitutes the 

table key. 

• Report Date (date): The month and year of 

the enrollment report. 

• Plan type (categorical): The type of long-

term managed care plan in the report. 

• County name (categorical): the name of the 

county in New York State. 

• Enrollment (quantitative): the total number 

of people enrolled in a plan per county. 

The raw data used by the LA Times workflow comes 

directly from California’s State Water Resources 

Control Board. This state government entity 

periodically publishes district-level water usage 

statistics to their website. The LA Times includes an 

Excel file in their repos published to the organization’s 

account on GitHub. We know the raw data’s source 

because it is listed in a section in the published, online 

article called “How we did it.”  

The raw version of this water usage table data straight 

from the California government has 10,936 items and 

32 attributes. The data dictionary constructed from the 

raw data below is a subset of all data variables. 

 

Figure 2: The raw data used by the Los Angeles Times comes straight 

from California’s State Water Resources Control Board. The 

structure of this data is more receptive to computational methods 

and thus requires less reshaping than the data in the workflow from 

The New York Times on long-term managed care enrollment 

numbers. The final, wrangled form of this data is included in Figure 

3. 
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• Supplier Name (Categorical): The name of 
the municipal utility district, such as Easy 

Bay Municipal Utilities District. This 

attribute constitutes the table key. 

• Mandatory Restrictions (Categorical, 

expressed as Yes/No categories): Whether 

the district was subject to mandatory water 

restriction during the reporting month. 

• Reporting Month (Date) The day, month, 

and year of the report. 

• REPORTED Total Monthly Water 

Production Reporting Month 
(Quantitative): potable water production 

during the reporting month 

• REPORTED Total Monthly Potable 

Water Production 2013 (Quantitative): the 
water production for the observation month 

in 2013. 

• Total Population Served (Quantitative): the 

population served by the utility district. 

• Supplier has Agricultural Water Use 

Exclusion Certification (Categorical, 

expressed as Yes/No categories): Whether 
the utility district can subtract water 

delivered for commercial agriculture from 

their total potable water production total. 

• % Residential Use (quantitative): The 
percentage of potable water that’s intended 

for residential use. 

Both tables consist of categorical and quantitative 

data. The attributes “Supplier has Agricultural Water 
Use Exclusion Certification” and “Mandatory 

Restrictions” from the Los Angeles Times workflow 

are classified as categorical as opposed to Boolean, 
even through the only two levels in this variable were 

“Yes” and “No,” which naturally correspond to True 

and False. Both table did not have attributes that could 

be considered ordinal data.  

3.2 Wrangling tasks by journalists 
I derive tasks in this project from the action codes 

applied to each workflow from prior work. These were 

referred to as actions, as opposed to tasks. Tasks imply 

intention, but because this indirect observation study 

did not include interviews with journalists, we cannot 

make claims about intentions. This prior work gives an 

auditable, reproducable record of the wrangling 

sequences applied to the data from its raw form to its 

final formats. This data provides a strong signal of 

what wrangling tasks journalists perform and how they 

accomplish them. Why these journalists did what they 

did and how they did it is still an open question. 

Part of the task abstraction contribution for this project 

involves deriving tasks from these sequences of 

actions. I substitute the original authors intention with 

my own judgement from my experience as a journalist 

and data wrangler familiar with Python and R. Actions 

from prior work and the tasks derived in this project 

share a many-to-one relationship, one tasks is 

comprised of many actions. Thus, the process of 

deriving tasks is simply segmenting consecutive 

actions into semantically meaningful chunks. For each 

task, I also recorded a snapshot of the intermediate 

table representation as a benchmark for the wrangler, 

myself, to achieve. Table 1 details each derived tasks 

for both workflows but not in the order they occur in 

the workflows.   

In reproducing each workflow in OpenRefine and 

Dataprep, I only consulted the task sequence, which 

does not list the underlying actions. The task sequence 

for each workflow is provided in Supplementary 

Materials. It would be trivial to reproduce the exact 

sequence of actions in each application. More can be 

learned about the strengths and weaknesses of each 

application by only specifying the desired state of the 

wrangled data at the end of each benchmark. 

The workflows I reproduced have been closely read at 

least three times, first to analyze the workflow in prior 

work and twice for each application. First, at least five 

days passed between the same workflow using the two 

different wrangling applications. Second, the 

application-workflow order was also varied to further 

counter balance the experiment design. 

 

Figure 3: A subset of the wrangled data using in the workflow from 

The Los Angeles Times. The high-level wrangling objective for this 

data is to aggregate the key attribute and derive a performance 

metric from quantitative attributes in the original data. 

The task sequence derived from The Los Angeles 

Times workflow has a two salient data wrangling 

tasks. First, one of the first acts of wrangling was to 

remove all variables from this dataset but five 

variables of three data types: water supplier name 
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(categorical), the month and year of the reading (date), 

and total water production in gallons (quantiative), 

total water production in gallons for 2013 (quantitive), 

and the percentage of total water production that was 

used in residential zones (quantitative). Second, the 

month variable, in the sense of variables in Tidy Data 

[16], exists in two table columns. Water production 

values for 2013 have their own column, while 

production-month values for the remains years are 

properly separated into two columns. This data quality 

error, a structurally-spliced variable, is a difficult 

issues to address with wrangling. 

The Long-term Managed Care workflow concerns 

converting a dataset intended for presentation into a 

dataset intended for computation.  This task sequence 

highlights two important data quality issues addressed 

by wrangling and one common wrangling task. First, 

the raw data pivots upon plan name and county to 

create a hierarchial encoding for total enrollments 

numbers along the vertical position. Second, the data 

also includes total numbers for each plan names and 

for each county within a plan name as rows. Although 

not a data quality issues, this workflow illustrates an 

Aggregate Join (T9), adding the total enrollment 

within a plan name as a separate column at the farthest 

right column of the final-output table. 

 

Task Description LMC CCS 

T1 Extract value in column ✔️  

T2* Reshape table  ✔️ 

T3 Remove observations ✔️ ✔️ 

T4* Aggregate Join ✔️  

T5 Deduplication  ✔️ 

T6* Resolve entity names ✔️  

T7 Derive variables  ✔️ 

T8 Aggregate observations ✔️  

T9 Remove columns  ✔️ 

T10 Trim the Fat  ✔️ 

Table 1: Tasks with asterisks denote tasks that prior work observed 

being performed in both a within- and between-table context. LMC 

refers to the workflow Long-term Managed Care, and CCS refers to 

the workflow California Conservation Scores. 

 

                                                        
1 https://en.wikipedia.org/wiki/Prograph 

4. Related Work 
This analysis project is related to other work 

performing usability analysis using the cognitive 

dimensions of notation framework. 

4.1 Cognitive Dimensions 
In response to a lack of user interface design 

methodologies grounded in the design activities of 

user interface designers in the 1990s, Blackwell and 

Green describe a cognitive dimensions of notation 

framework [1]. Rather that positioning it as an analytic 

method, cognitive dimensions of notation are a 

framework of interface-independent discussion tools 

for evaluating the cognitively-relevant features in user 

interfaces and non-interactive notation. 

Related work on usability analysis using this 

framework mostly concern visual programming 

languages. Although this framework is supposed to 

extend to interactive devices, usability-analysis papers 

incorporating cognitive dimensions often deal with 

non-interactive notation, especially visual 

programming environments. Green and Petre, 1996 

[2] evaluate two commercially-available data flow 

languages, Prograph1 and LabVIEW2. Today there is 

still active support for the Prograph language, and 

LabVIEW is still receiving active support from 

National Instruments. This project is different from 

related work by focusing on two wrangling 

applications that fall within the category of direct-

manipulation interfaces.  

4.2 Evaluation of wrangling applications 
Related work in evaluating wrangling applications is 

often done in the context of evaluating novel 

wrangling tools or techniques by the designer/paper 

authors. To the best of my knowledge, there does not 

exist a systematic evaluation of existing wrangling 

applications by a third-party.  

To validate the Wrangler, Kandel et al. performed a 

controlled user study comparing Excel to their 

wrangling application in three tasks. Wrangler [7] is a 

mixed-initiative user interface that drives an 

underlying declarative transformation language 

evaluated. In a user study to validate the usability of 

the interface, researchers compared Wrangler to Excel 

in three wrangling tasks: extracting text from a column 

(T1), fill missing values, and table reshaping (T3). 

While this project includes the same tasks, this 

2 https://www.ni.com/en-ca/shop/labview.html 
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usability study took a more quantitive approach, 

measuring time to completion and performing 

ANOVA on the results of a post-study questionnaire. 

This project takes a strictly qualitative approach to 

comparing wrangling applications. 

5 Methods & Tools 
This analysis project conducts a usability analysis 

based on the cognitive dimensions of notation 

framework to evaluate two tools used by journalists 

for data wrangling. This section includes an overview 

of data wrangling tools with a more detailed 

description of the two tools evaluated in this project: 

OpenRefine and Google Cloud Dataprep.  

All of these tools constitute direct-manipulation 

interfaces. Hutchins et al. [4] define direct-

manipulation interfaces as systems where the user has 

the sense of performing operations directly upon the 

objects instead of through an abstraction 

computational medium. All of these applications 

incorporate a spreadsheet metaphor of the underlying 

data structure into their interfaces to give the user the 

impression they are directly manipulating the data; 

however, the actual organizational structure of the data 

on a user’s computer does not necessarily match the 

structure on the screen. Example of wrangling 

applications that are not direct-manipulation interfaces 

include scripts, computational notebooks, and other 

environments where the user is wrangling via a 

programming language. 

5.1 Overview of data wrangling tools 
Within the category of direct-manipulation interfaces 

for wrangling, we can divide all existing productions 

into two categories. First, there are general purpose 

data tools with wrangling features. Microsoft Excel3 

is the general spreadsheet software by which all data 

tools are invariable compared against. In the user study 

conducted to provide an initial evaluation of Wrangler, 

Excel was the baseline application [7]. It includes 

features to pivot one’s data, which structurally 

transforms the underlying data into a cross-tabulated 

format. Google Sheets4 is a free, online, and cloud-

based spreadsheet application in the same product 

category as Excel. It includes features to deduplicate 

table rows that contain identical values for all 

columns. Deduplication (T5) is a common, wrangling 

task. 

                                                        
3 https://products.office.com/en-ca/excel  

The second category of direct-manipulation interfaces 

for wrangling are applications designed specifically 

for wrangling. First, Trifacta Wrangling is an 

interactive data cleaning application that can be run on 

the desktop or in the cloud. It is the latest commercial 

evolution of research on interactive data 

cleaning/wrangling systems by researchers at Stanford 

and University of California Berkeley in the early 

2010s [7], [10]. For nearly all intents and purposes 

relevant to the user, Trifacta Wrangler is Google 

Cloud Dataprep is an instance Trifacta Wrangler 

running on the Google Cloud platform. Second, 

Tableau Prep is a desktop wrangling application that 

includes a three-panel view of the data: a high-level 

provenance graph of table transformation, a profiling 

panel of dataset variables, and a traditional 

spreadsheet/table view of the data being wrangled. 

Finally, Workbench is a recent open-sourced, cloud-

based data cleaning platform. 

5.2 OpenRefine 
OpenRefine [5], also known as Refine, is one of the 

oldest applications for wrangling data. The open-

source project has gone through previous names as it 

has changed hands between various supporting 

organizations. It was known initially developed and 

known as Freebase Gridworks when it was under the 

development of Metaweb Technologies, Inc in May 

2010. It was renamed to Google Refine when Google 

acquired Metaweb in July of the same year. In October 

2012, Google ceased active support for the project and 

it became known as OpenRefine [12].  

 

Figure 4: The OpenRefine interface loaded with raw data from the 

California Conservation Score workflow. Like all wrangling 

applications, the interface is organized around a table view of the 

data; however, more sophsticated visualizations are incorporated 

into other parts of the interface. 

The model for applying wrangling operations in 

OpenRefine largely fit into an iterative subset-modify 

cycle. Users begin by selecting all or a subset of the 

4 https://www.google.com/sheets/about/  

https://products.office.com/en-ca/excel
https://products.office.com/en-ca/excel
https://www.google.com/sheets/about/
https://www.google.com/sheets/about/
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data and transforming the selected portion. The 

predominate organizational principle in OpenRefine is 

a distinction between rows and records. A row in 

OpenRefine corresponds to a row in a table; however, 

a record refers to multiple, sequential rows with an 

index key that exists within the table. 

 
 

 
Figure 5: OpenRefine incorporates dynamic queries to filter the 

dataset through a feature it calls Facets/Faceting. The Numeric Facet 

(top left) shows a histogram of quantitative column values, and the 

Timeline Facet (top right) provides the same function for date 

column values. Both of these features filter the data through interval 

selection. The Scatterplot Facet (bottom) supports filtering based on 

two variables. This image comes from the OpenRefine Wikipedia, 

as my installed version of the application was never able to display 

the plotted data. 

OpenRefine incorporates visualization into its 

interface through its Faceting feature. “Faceting” in 

open refine refers to interactive visualizations to 

support dynamic queries coordinated with the table 

representation of the data. These filter parameters can 

be combined with any other filter parameter to further 

refer the filters applied to the data. Figure 5 details the 

types of visualizations supported in Faceting. Textual 

facets display the unique values in a column sorted 

alphabetically with counts of the unique occurences on 

these items, and this type of facet does not incorporate 

visualization. Users can select any combinations of 

values to filter the dataset. Numeric Facets are 

essentially histograms enabled with interval selection 

to support dynamic queries. The column must be 

entirely comprised of quantitative data for this facet to 

work. The Timeline Facet provides a similar view of 

the distribution for column comprised of data objects. 

While the previous Facets only visualized one column 

of data, the Scatterplot Facet visualizes two columns 

of quantitative data. However, this feature never 

worked properly in the course of this analysis. The 

OpenRefine Wiki also does not offer any support for 

troubleshooting this issue.  

5.3 Google Cloud Dataprep 
Although Google Cloud Dataprep is branded as its 

own application, it is actually an instance of Trifacta 

Wrangler running on the Google Cloud Platform. 

Trifacta Wrangler/Dataprep is also the commercial 

descendent of the original Wrangler interface by 

Kandel et al. [7]. Thus, that particular application has 

been excluded from this analysis. I assume that the 

original authors would encourage journalists to use 

Dataprep or Trifacta Wrangler instead of the original 

Wrangler application for actual data wrangling work. 

In this analysis, I will refer to the shared interface as 

Dataprep even if it is identical to Trifacta Wrangler 

and extremely similar to the original Wrangler. 

Like OpenRefine, Dataprep is a GUI application for 

wrangling data structured around a spreadsheet/table 

view of the data.  

The only substantial difference between the Trifacta 

Wrangler and Dataprep seems to be the underlying 

computer architecture. Dataprep’s architecture uses 

services from Google, such as their Cloud Storage 

product for the underlying raw data. But these 

architectural differences between these two products 

have a subtle but trifling impact on the usability of the 

user interface, which is the primary scope of this 

project. For example, exporting the final output of the 

Long-term Managed Care on Google Cloud’s shared 

infrastructure took an average of 5.5 minutes (over 

eight trials) even though the output file is only 267 KB. 

But system level concerns about speed or data 

scalability are outside the scope of this project.  

 

Figure 6: The Google Cloud Dataprep interface loaded with raw data 

from the Long-term Managed Care workflow. Dataprep 

incorporates more visualization into its interface than OpenRefine 

and the final wrangling output contained fewer errors. 

Dataprep possess one unique feature that distinguish it 

from other wrangling applications. It suggests possible 

transformation for the user to apply to the dataset 

based on previous data transformations using a 

proprietary recommendation algorithm. Similarly, it 

will suggest transformations based on sections of text 
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high-lighted by the user. Interacting directly with a 

table is a novel interaction technique for specifying 

table transformations. The status quo for creating 

transformation specification is by either navigating 

through menu-items and toolbar buttons or specifying 

transformation in the underlying the transformational 

language. 

While OpenRefine leverages visualization in a way 

that primarily supports filtering and secondarily 

supports exploration. Dataprep incorporates 

visualization for visual data profiling through two 

idioms: color stripe, figure 8, and visualizing column 

distributions, figure 9. Both of these idioms are highly 

relevant to cognitive dimensions of the interface while 

performing wrangling tasks and are discussed in depth 

in the analysis section. 

6. Analysis 
This section discusses how cognitive dimensions 

apply in the process of data wrangling by considering 

the most salient dimensions each on in turn, situating 

it in the context of other domains for illustrative 

purposes, and comparing and contrasting OpenRefine 

and Dataprep along these dimensions. The ultimate 

aim of this section is not to provide an exhaustive 

examination of cognitive dimensions in wrangling but 

to “coax out” convergent design features by compare 

the two applications with discussion grounded in this 

cognitive dimensions framework. Thus, dimensions 

that illustrate significant differences and similarities 

between the two interfaces comprise the majority of 

the discussion in this section.  

6.1 Error-Proneness 
According to Blackwell and Green [1], error-

proneness in a notation aims to capture areas where a 

design features lead to systematically occuring errors, 

especially those where the notation does not offer 

protection from committing them. This class of errors 

excludes simple mistakes and slip-ups, and usability 

analyses drawing on the cognitive dimensions 

framework note that the distinction between the two is 

not clear [2]. While Blackwell and Green do not 

elaborate on methods for differentiating between the 

mistakes and serious errors, usability studies that use 

quantiative methods to identify statistically significant 

occurrence of errors may be one approach. 

One way to elucidate error-proneness in wrangling 

interfaces is to consider mismatches across the Gulf of 

Execution, which Hutchins et al. [4] describe as the 

distance between the thoughts and goals of the user 

and the commands specified to the system. When this 

distance is zero, then system appears to behave 

entirely as expected, and errors constitute occasions 

when the system appears to act in ways other than what 

the user intended. These type of errors naturally break 

into two categories: false positives and false negatives. 

Table 2 breaks down these two errors in the context of 

removing observations from a dataset. 

 Observation 

was deleted 

Observation 

was retained 

Observation 
should be 

removed 

 

Success False  
negative 

Observation 
should be 

retained 

 

False  
positive 

Success 

Table 2: Errors in the wrangle process can often surface from 

mismatches between what the user intends to accomplish and the 

specification of the notation. 

Because each workflow includes the raw data and the 

final, wrangled output, there exists a “ground truth” 

wrangling results to compare the end product of 

wrangling with both direct-manipulation applications. 

Errors in the output reproduced by the applications 

then constitute discrepancies between my output and 

that produced by the journalists. Supplementary 

Materials contains one example script of this diff 

produced in OpenRefine and Dataprep. While it is 

possible for our reproduced wrangling to find data 

quality issues undiscovered in the original workflow, 

this was the case for neither of the two workflows 

considered in this analysis; however, prior work did 

discover errors in other workflows. 

 

One source of error-proneness in wrangling 

applications occurs in a common secondary notation, 

regular expressions. Errors that result from regular 

expressions inevitably result from an imprecise 

expression manually entered by the user. These errors 

can occur in any domain, not just data wrangling. But, 

both Dataprep and OpenRefine incorporate design 

features to mitigate these errors since the specification 

of regular expressions is central to accomplishing 

many common wrangling tasks, including T1 and T3. 
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Figure 7: This figure illustrates extracting column values in the 

Long-term Managed Care workflow using Dataprep. With 

thousands of total columns, this process can be extremely error 

prone. It is up to the interface to guard against this kind of error even 

though it revolves around the use of secondary notation.  

Error-prone behavior in regard to these two tasks 

involves not checking all the variables or observations 

that match the regular expression and all those that do 

not match. This sort of exhaustive search is the only 

way to ensure that the distance between what the user 

intended and what was specified in the notation is zero. 

The time complexity of this operation is linear to the 

size of the input. While such complexity is desirable 

for computational processes, this process is strictly a 

human activity become prohibitively expensive when 

the dataset contains hundreds of observation. Design 

features that increase visibility can aid in mitigating 

these errors and section 6.4 elaborates on them further. 

6.2 Secondary Notation 
The dimension of secondary notation refers to 

supplementary information separate from the official 

syntax [1]. In the usability analysis of programming 

languages secondary notation refers to comments and 

indentation. These features non-essential components 

intended to assist the user in completing a task, and 

wrangling applications also contain many of these 

supplementary features. 

If we are to interpret the data order in rows and 

columns as “official syntax” in the context of user 

interface evaluation, secondary notation in wrangling 

applications incorporate three forms of secondary 

notation into their interfaces: regular expressions, 

menus, programming languages, and visualization. 

Regular expressions are a concise specification for a 

search pattern in textual data often used in wrangling 

for extracting components of values in categorical data 

(T1) and specifying which rows to remove based on 

column values (T3). OpenRefine also allows the user 

to write column-extraction or row-matching 

specification in Python or General Refine Expression 

Language (GREL). Finally, both OpenRefine and 

Dataprep incorporate visualizations beyond a large 

table display of the data being wrangled into their 

interface.  

Within the category of secondary notation 

visualization constitutes redundant recoding, a 

channel of information that is “separate and easier 

channel for information that is already present in the 

official syntax” [3]. In my analysis the presence of 

visualization had a strong effect on error-proneness 

when it came to accomplishing two tasks: extract 

value from column (T1) and remove observations 

(T3). 

Although regular expressions, menus, and 

programming languages are often used in wrangling 

interfaces to match table rows to filter and for 

extracting values from columns, the presence of 

visualization in Dataprep had the greatest impact on 

reducing error-proneness. The final analysis using 

Dataprep caught errors missed in OpenRefine because 

they were flagged during wrangling with the data-

profiling visualizations in Dataprep. This is largely 

due to the color stripe present at the top of each 

column, as illustrated in figures 7 and 8. 

 

Figure 8: Color stripes such as the one picture above adorn the top 

of each column in Dataprep. 

In terms of what-how-why analysis, this color stripe 

idiom visualizes the proportion of data quality 

categories in an individual column with stacked line 

marks to encode proportion and color to encode 

category. There are three data quality types: valid, 

which signals the column values match the column 

data type specified by the user; mismatched, such as 

having alphabet characters in a column of quantitative 

variables; and missing values, often denoted as NULL, 

NA, or left as an empty string. These are especially 

useful for finding data quality issues. 
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Figure 9: Beneath the color stripe, shown in figure 8, the bar charts 

and histogram charts provide another useful secondary notation for 

identifying data quality issues in Dataprep. 

Another useful visualization that didn’t directly lead to 

finding bad rows but gave me a sense of confidence in 

the data were bar charts and histograms of the column 

distribution, as show in figure 9. In terms of what-

why-how analysis, both of these idioms visualize the 

distribution of values within a column using line 

marks along the vertical position and position along 

the horizontal column to identify which values deviate 

from “normal.” In histograms, the keys are binned 

ranges within the underlying data and in bar charts the 

keys are the unique levels of the categorical data. Both 

visualizations hope to signal deviations in the data 

from “normal,” and require domain expertise to 

distinguish valid and invalid values. 

Histograms may be able to detect a nefarious data 

quality issues that this analysis project did not address 

because it was absent from the two workflows. A 

common data quality issue involves values within the 

same column on different scales of magnitude. For 

example, a table value may encode one million dollars 

as “1,000,000” or it may denote it as “1” with it being 

implied that the values are in the millions. A bimodal 

histogram may signal that this type of error exists in 

the underlying data, and domain expertise is necessary 

to confirm that such values are actual errors. 

6.3 Provisionality 
Blackwell and Green define provisionality as a one’s 

commit actions made or a notation system’s ability to 

support speculative operations or “what-if” games [1]. 

Although not a notation, the shades of provisionality 

can best be explained by different types of writing 

instruments. The marks made by pencils and dry-erase 

markers have a high degree of provisionality because 

they can be easily erased, but marks made with 

permanent markers, pens, and tattoo guns have low 

provisionality because they cannot be easily erased. 

In wrangling applications, provisionality occurs in a 

system in two ways: previews and undo. First, a 

system can preview to the user the results of a 

transformation. Second, the system can provide easy 

ways to recover from actions committed, much like a 

pencil with an eraser. Previewing is an important 

feature for operations that address both rows and 

columns. Both OpenRefine and Dataprep support 

preview and an undo features. The fact that both of 

these interfaces have converged upon these features 

signals that they are important in wrangling 

applications.  

Related work in data wrangling that evolved into 

Dataprep supports previewing. Wrangler [7] supports 

provisionality in both tasks through juxtaposing the 

table before and after the transformation with color 

linking and transparent overlays to preview the results. 

The value extraction task (T1) always incorporates 

secondary notation as specification of the extraction 

method. Hence, column transformation previews also 

enable provisionality of this other notation. This 

feature is essential when specifying extraction with 

Regular Expressions in both wrangling applications 

because it guards against the error-proneness of this 

notation. 

Provisionality can greatly assist in wrangling tasks 

involving table transformations, especially when 

extracting values from a column (T1). Both 

OpenRefine and Dataprep generate a provisional 

column filled with the output of the extraction method. 

Every change in the extraction specification updates 

this preview column, and committing the operation is 

essentially making this column a concrete variable of 

the data. 

 

Figure 10: Preview features of the output from column extraction 

(T1) in OpenRefine reflect with a high degree of provisionality. In 
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this example of wrangling in the LMC workflow, the application is 

extracting the date of a report from a column with mixed variables: 

date, plan name, and plan type. The same feature is illustrated in 

Dataprep in Figure 7. 

While both OpenRefine and Dataprep support 

previewing, they implement this feature differently, as 

figures 7 and 10 illustrate. OpenRefine generates a 

preview modal dialogue window. Dataprep situates a 

column within the table display of the data, color codes 

the column that is the source in blue and the preview 

column in yellow and highlights the match in the 

source column. The ability to preview the effects of an 

action is one way to increase provisionality and 

recovering from a committed action is another 

method. 

Both OpenRefine and Dataprep also support 

recovering from an actual with an undo feature 

situtated within a list detailing the sequences of table 

transformations applied to the raw data. Dataprep 

supports this application a little better than 

OpenRefine. While both applications enable the user 

to edit a previous table operation, delete a 

transformation, and reorder transformations. Dataprep 

supports these operations within the recipe panel. 

OpenRefine supports this through directly editing the 

JSON file containing, which is a secondary notation 

of the system. Dataprep allows the user to temporarily 

disable individual transformations but not delete them 

from the history. OpenRefine does not support this 

since JSON does not support comments. A user may 

copy the specification for the table transformation in 

another application, such as Notepad. But this strategy 

still constitutes deletion in the wrangling application.  

 
 

Figure 11: Both applications record an auditable history of the table 

transformations applied to the raw data. The left figure shows 

history in OpenRefine and the right figure show history, also known 

as recipes, in Dataprep. This features increase the provisionality of 

the interface by not forcing the user to commit to previously 

committed table transformations.  

Both applications could further increase the 

provisionality through this feature by supporting 

branching table transformation sequences. The 

wrangling provenance record in current use from both 

applications is strictly linear. Longer branches of 

what-if wrangling exploration could be reported by 

supporting a bifurcate actions in this history that 

allows the user to operate down a separate branch. 

Such a feature is similar to the speculative 

development avenue that are currently supported in 

software development projects using source code 

management tools such as SVM or Git. This additional 

feature would come with the tradeoff of increasing the 

number of secondary dimensions, and wrangling users 

would have to learn another subcomponent in a system 

that already uses many subcomponents.  

6.4 Visibility  
The cognitive dimension of visibility, also called 

visibility and juxtaposability, refers to how well 

system components can actually be seen by the user 

[1]. Before describing visibility in data wrangling 

applications, it is illustrative to briefly describe how 

usability analysis of notation in other domains 

interpret this dimension. In the domain of 

programming environments, Green and Petre describe 

a system with maximum visibility as one where every 

part of code is simultaneously visable [3]. For 

computer programs that are small enough, visibility is 

not an issue; however, as the size of the software 

project increases, visibility decreases, obviously. 

As with programming environments, visibility in 

wrangling environments has the same inverse 

relationship with the environmental input. Where the 

dimensions of the tabular datasets are to data 

wrangling as lines of code are to computer 

programming. In wrangling, being able to view the 

sections of the data currently being transformed, and 

even those section not transformed, is the major issue 

of visibility.  One obvious and ubiquitous interaction 

technique for overcoming visibility limitations with 

large datasets is to utilize scrolling. When the number 

of columns and rows of a table exceed the “real estate” 

afforded by the computer screen, then many wrangling 

applications and those that support wrangling utilize 

vertical and horizontal scrolling, respectively. 
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Figure 12: Dataprep uses color highlighting to denote rows of the 

table that will be removed with the implementation of the pending 

table transformation. While OpenRefine has the option of viewing 

either all the removed rows or all the retained rows, Dataprep 

situates the rows to be removed in the same view as the rows to be 

retained. However, the user can also specify to view just the rows to 

be removed to increase the visibility of the system. 

Visibility is especially important when filtering rows 

(T3) to give the user confidence that the 

transformation is operating upon the rows they want 

and not on the ones they want to be retained. Both 

applications show the rows that will be removed and 

the rows that will not be removed. However, 

Dataprep’s implementation of this feature is superior 

because columns to be removed are situtated within 

the table along with the rows that will be retained. 

OpenRefine only allows the user to view one or the 

other. Thus confirming that the system is removing 

exactly what you intended it to remove in Dataprep 

requires less human memory than in OpenRefine, 

which concurs with the rule of thumb in Visualization 

Analysis and Design that “Eyes Beat Memory” [9]. 

Visibility also has a difficult-to-access relationship 

between visualization as a secondary notation. 

Visualization can effectively “show” users a 

dimensional subset of their data in a much smaller 

space. While scrolling through a column of thousands 

of values is one way to see all the data, most people 

would probably prefer viewing a histogram of the 

distribution within the column, depending upon the 

task.  

Visualization for wrangling also addresses a common 

problem of how to view a large dataset when screen 

“real estate” is limited. Related work has addressed 

this issues specifically in queries on large datasets. 

VisDB [8] visualizes the query specification process 

in a database, and compresses each database record as 

one pixel to represent a large table of data on one 

screen. However, visualization intervention in the 

wrangling applications considered in this project 

attempts to visualize the schema of a table instead of 

each individual data point.  

The book Visualization Analysis & Design [9] 

classifies three design choices for reducing the amount 

of data shown within one view and thus can also 

address the common problem in data wrangling. First, 

filtering can reduce the amount of data presented. 

Second, aggregation can reduce the size of the data by 

combining many observations into one. This design 

choice effectively coarsens the dataset. Finally, 

embedding describes providing an additional view of 

the data triggered by the user interacting with the 

dataset. Elided data, where some data is filtered and 

others are summarized, is one example of embedded 

data. The two wrangling applications considered 

largely utilize aggregation design choices through bar 

charts and histograms, elaborated upon in section 6.2 

on secondary notation. 

One short coming of filtering through Faceting in 

OpenRefine is that there is no way to change the 

granularity of the visualization. For example, the 

Long-term managed care workflow requires the user 

to filter the data for just summer months in 2013, 2015, 

and 2016. When attempting to accomplish this task 

with the Timeline Facet, the user isn’t able to select 

the specific month. The feature does not support 

semantic zooming to give the user the control they 

need to accurately specifying the transformation. 

Visualizations of the distribution of values within a 

column can assist in locating data quality issues that 

were not included in the two workflows analyzed but 

were present in other workflows from prior work. 

Because much public data originates from manual data 

entry into a form or even a spreadsheet, data quality 

issues can result from human error. Both bar charts of 

categorical data and histograms of quantitative data 

can support the task of finding values that do not 

conform to the trend of the data in general. 

The visibility of the data being operated upon becomes 

crucial when accomplishing tasks T1 and T3 as it can 

leads to errors characterized by mismatches between 

what the user intends and what is specified in the 

systems notation. Section 6.1 elaborated on this issues 

and error-proneness in wrangling applications, in 

general. Both applications implement a preview 

feature that provide an interim representation of the 
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underlying dataset if the table transformation currently 

being considered is executed. This feature is a clear 

example of leveraging provisionality in an interface 

and is further described in section 6.3.  

In Dataprep, only 34 table rows can be viewed at one 

time. Column widths can vary from table to table. 

LMC is the highest dimensionality dataset in this 

project with six columns at the conclusion of the 

wrangling processes, and this table just barely fits in 

the window allotted. Hence, only a small subset of data 

is directly visable to the user at any given moment.  

In pursuit of T3, remove observations, the visibility of 

which table rows are removed and which are retained 

has a significant impact on error-proneness of a 

wrangling application. Dataprep possesses a unique 

feature that makes it superior to OpenRefine when 

removing rows in this task. Dataprep allows the user 

to toggle between viewing table rows that match the 

filter criteria and will be removed and those that do not 

match and will be retained. OpenRefine only displays 

the table rows that will be removed, placing the onus 

on specifying what is retained on the user’s memory, 

hence increasing the cognitive demand of the task. 

6.5 Other Dimensions 
There are few cognitive dimensions not worth 

discussing in much detail within the context of two 

direct-manipulation interfaces.  

By design, direct manipulation interfaces have high 

degrees of progressive evaluation and closeness of 

mapping. The ability for current progress to be 

checked at any time is progressive evaluation [1]. 

Direct-manipulation interfaces provide a high degree 

of this dimension by default. At any stage of wrangling 

in both OpenRefine and Dataprep, the user is able to 

see their current progress. Wrangling in a 

programming environment has a lower degree of this 

dimension. In prior work studying wrangling 

notebooks from journalists, users frequently inspected 

the current state of the table after a transformation 

operation, which was coded as peek at data. Likewise, 

interfaces that facilitate wrangling through 

interactions with a table representation of the data 

enjoy a high degree of closeness of mapping, the 

closeness of the representation and the domain [1]. 

Viscosity is defined by Blackwell and Green [1] as the 

amount of effort necessary to perform a single change. 

In chemistry, viscosity is an expression of the 

resistance to flow of a system under stress, and the 

cognitive dimensions framework repurposes this term 

to mean how resistant a system is to changes. When 

applied to data wrangling, it means the amount of work 

performed to transform a table into a particular 

structure. This dimension manifests itself when 

removing many columns from the dataset, which falls 

under Trim the Fat (T10). Both interfaces converge on 

a way to select multiple columns for removal at one 

time. This feature is extremely convenient as the 

California Conservation Score workflow requires the 

user to remove more than 30 columns from the raw 

data. Removing columns individually would 

constitute an unnecessary amount of effort to perform 

a single task, which is remove all unnecessary data 

variables. 

7. Discussion and Future Work 
In the future, it may prove fruitful to widen the scope 

of wrangling applications considered Tableau Prep, 

Workbench, and Microsoft Excel. Although software 

products from the data visualization company Tableau 

are not free by default, the company provided 

journalists with complimentary licenses of Tableau 

Prep, its data wrangling application, since 2018 along 

with Tableau Desktop, its flagship visualization and 

analysis application [14]. Like Dataprep/Wrangler 

Trifacta, Tableau Prep also uses univariate 

visualization idioms to profile the underlying data for 

error detection and provides a table view of the dataset 

being wrangled. However, this product has a unique 

network view of wrangling provenance. Workbench is 

another wrangling product especially relevant to 

journalism because it was built for journalists in mind. 

It was initially launched in 2017 as an “integrated data 

journalism platform that makes it easy to assemble 

data scraping, cleaning, analysis, and visualization 

tasks without any coding” [17]. While it appears to 

follow similar data wrangling conventions to 

OpenRefine and Dataprep, a more in-depth analysis 

may shakeout its strengths and weaknesses in this 

crowded field of data wrangling products. It has been 

said that 90% of data journalism is done in Excel [2]. 

This product’s ubiquity may be due to its default 

presence on many newsroom computers [13]. 

8. Conclusion 
In the end, this report that OpenRefine and Dataprep 

share much of the same core functionality; although 

Dataprep use of visualization lead to less error-

proneness in process and high-quality data at the 

conclusion of the process. Wrangling itself can be a 

highly error prone activity. But according to the 
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cognitive dimensions framework, we cannot simply 

decrease the error-proneness of a system, each 

dimension is intimately connected to other 

dimensions. Thus, incorporating visualization as a 

secondary notation, increases the complexity of the 

system but the user gains the ability to see potential 

data quality issues that were previously only 

accessable from manually scrolling through the table. 

Increasing the provisionality of the interface, both in 

previewing the results of a table transformation and 

recovering from committed results is another “knob” 

that the tool builder can tweak to decrease error-

proneness.  

This analysis project only considered two direct-

manipulation applications that incorporate 

visualization and incorporating more wrangling 

applications and more tasks will provide a better 

understanding of the tradeoffs inherent in designing 

tools for data wrangling. 
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Supplementary Materials 
California Conservation Score Task Sequence 
 

1. Format Display 

Format Tables to display: at most 500 columns and floats have two significant figures.  

2. Trim the fat 

Import uw_supplier_data100516.xlsx but only keep the columns with supplier name, month, total water 

production in gallons, total water production in gallons in 2013 and residential water usage. Note: the total 

records in this table should be 10,936

3. Filter dataset by data range 

4. Convert column type 

Work the month variable into a filterable format. In the analysis in Python by the Los Angeles Times, they 

converted it to a string. 

5. Remove the rows 

Keep only unique observations from three summer months (June, July, and August) in 2015 and 2016. 

6. Remove duplicates 

Note: the total records in month table should be 2,425 

7. Remove incomplete data 

Eliminate any suppliers from the month table dataframe who have fewer or greater than six months of data 

with those labels.  

Hint: There are 19 incomplete suppliers 

At the end of this process there should be 2,334 records. 

8. Aggregate dataset 

Make a new table from the month table, it could be called summer table, that groups and sums the total 

water production for each summer.  

 

Hint: The between-table context way to do this is by separating into many tables, and create separate tables 

summing the total water production gallons for 2015, 2016, and 2013, grouped by supplier name. 

 

Compare the total number of records for each new table. It should be 389 for each. Count the total number 

of records in summer table. It should be 389 records for each sub table. 

9. Derive percentage change 

Derive the change in savings between 2015 and 2016 in the summer table as a new variable. In order to 

calculate this measure, you'll have to derive two intermediate variables, the percent change of summers 

2015 and 2016 versus the baseline of summer 2013 as a new variable, and the savings change in summer 

table. The final product should look like this. 

 

Optionally, rank cities that have regressed the most towards their 2013 baseline. I would consider this 

analysis, however. 

10. Calculate mean 

Calculate mean residential water usage in 2016 for each supplier in summer table. Calculate the average 
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monthly water usage per person (R-GPCD) in each district for the summer of 2016 as a new table called 

summer 2016 means. 

11. Aggregate join 

Aggregate join average monthly water usage per person (R-GPCD) on summer table just for 2016. 

Join those water usage average to our combined table called summer table 

Create a summary statistic to judge how many districts regressed in summer 201 

12. Calculate performance metric 

Calculate a "Conservation-Consumption Score" that adjusts the savings change by the amount of water 

usage to surface the high-usage districts that regressed the most. Add this value to summer table. 

Look at the top ten districts by this score 

13. Export the table  
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Long-term Managed Care Sequence 

 
1. Remove Upstate Total rows 

Remove Upstate Totals 
 

2. Extract date 
Extract the report month and year 
 

3. Extract Plan type 
Extract the plan type 
 

4. Extract Plan Name 
Create a plan name variable 
 

5. Find and remove all junk rows:  
Remove the many junk rows with variables in plan name about: 
 

a. Report dates 
b. Plan names 
c. Notes about the plan 
d. BY PLAN 
e. Statewide Totals 
f. Plan totals 

 
6. Resolve plan names 

Resolve plan name entities 
 

7. Tidy the dataset 
Transform the dataset into a true Tidy dataset and rename the columns 
 

8. Calculate plan totals per month as a new variable 
Calculate total enrollment by plan name, added as new variable. This is done by aggregate join.  
 

9. Remove rows with missing county 
These have the provider name WELCARE. 

 
 
 
 
 


