
TraViz: Visualization of Traces in Distributed Systems

Vaastav Anand
vaastav.anand05@gmail.com

Matheus Stolet
stolet@cs.ubc.ca

1 Introduction

Distributed systems are prevalent in society to the
extent that billions of people either directly or in-
directly depend on the correct functioning of a dis-
tributed system. From banking applications to social
networks, from large-scale data analytics to online
video streaming, from web searches to cryptocurren-
cies, most of the successful computing applications of
today are powered by distributed systems. The me-
teoric rise of cloud computing in the past decade has
only increased our dependence on these distributed
systems in our lives.

Tasks like monitoring, root cause analysis, per-
formance comprehension require techniques that cut
across component, system, and machine boundaries
to collect, correlate, and integrate data. Distributed
Tracing is one such cross-cutting technique that cor-
relates events across the system to a specific request
by propagating a unique context per system with the
request. A trace represents the path of one request
through the system and contains information such as
the timing of requests, the events executed, and the
nodes where these events were executed. Moreover,
traces can be used to identify slow requests and un-
derstand the difference between request executions.

In this project, we propose to create a visualization
tool that uses data from traces to succinctly represent
the structure and performance of a distributed sys-
tem. Our tool will allow users to compare the path
taken by a group of requests to the path taken by
other requests. We believe that a visualization tool
that can represent the structure of a group of traces,
while also visually encoding relevant performance in-
formation, will make it easier for the developers to
triage root causes of performance bugs.

2 Data

We have 2 datasets that we will be visualizing using
TraViz. The first dataset is called HDFS and contains

the collection of traces and collection of pro-
cesses from a Hadoop file system used for distributed
storage and big data processing and the correspond-
ing source code. The second dataset is called so-
cialNetwork and was obtained from the DeathStar-
Bench open-source benchmark for cloud microser-
vices [4]. It contains the collection of traces, col-
lection of processes as well as the corresponding
source code. Each distributed system comprises of
multiple services that run on machines as different
processes. The HDFS dataset has a total of 71,001
traces and 18 processes. The socialNetwork dataset
has a total of 22,286 traces and 20 processes.

We discuss the attributes of each trace, process,
and source code in detail below.

2.1 Process

The process entity represents a service running in the
distributed system. The attributes for Process are
shown in Table 2.1. In addition to the attributes
listed, each process also comprises of multiple threads
which corresponds to an OS or Language Runtime
level thread.

2.1.1 Thread

Each thread has a categorical attribute tid, which is
a unique identifier for a thread within a process.

2.2 Trace

A trace represents a request from a client to a ser-
vice and shows the path of the request through the
distributed system. A trace has five attributes: id,
duration, start stamp, list of tags, and list of events.

• id of the trace is a categorical attribute used to
identify a trace.

• duration of the trace is the total time taken to
service a request.

1



Attribute Type Description HDFS Range/Cardinality socialNetwork Range/Cardinality
id Categorical Unique identifier of a process 18 20
name Categorical Name of the service the process is running 4 13
host Categorical Name of the machine on which the process is running 9 13

Table 1: Attributes of a Process

• start stamp is the unix timestamp of the time
when the trace was started.

• list of tags is a list of human defined keywords
that serve as the metadata for the trace. There
are on average two tags per trace in both
datasets, but the socialNetwork dataset has a
total of 8 different tags and the HDFS dataset
has a total of 22285 different tags.

• list of events attribute is a list of the events that
happened in a trace. The events in the list are
partially ordered [5], with events that caused
another event preceding the caused event in the
list. Such a partial causal relationship between
the events forms a DAG.

For the socialNetwork dataset, the number of
events per trace range from 3 to 398 with a mean
of 99 events. For the HDFS dataset, the number of
events per trace range from 0 to 9697 with a mean of
1427 events.

2.2.1 Event

Events are important things that happen in a system,
such as acquiring a lock, sending a request to another
server, or performing an update. These events are
defined by the developer as instrumentation in the
source code. Events can be considered as anything
a developer thinks is useful enough to log. The at-
tributes of an event are shown in Table 2.

3 Task

We have identified a total of 4 tasks that we want
to support with our viz tool. 2 of these tasks are
the main tasks for the project whereas the other 2
are stretch tasks which we will only implement if we
have already completed the implementation of the
main tasks.

The first main task for this project is comparison.
Namely, we want to compare the path and perfor-
mance of different requests. Each one of our traces
represents a request and the collection of events in

one trace forms a directed acyclic graph. Our com-
parison tasks are meant to compare the structure of
the DAGs created by the events and the duration of
different requests. We want to support three different
comparison tasks: one trace against one trace, one
trace against many traces, and many traces against
many traces. In more abstract terms, we will compare
the DAGs formed by the events in different traces by
partitioning them into side-by-side views or by show-
ing some sort of a graph diff.

The second major task we are proposing is summa-
rizing data. Many of the traces in our datasets are
similar, so we want to aggregate traces with the same
tags and events. We believe aggregating traces with
the same tags or events will give the user a more gen-
eralized understanding of the traces. The user will
be able to analyze the average duration of a group of
traces, instead of relying on the data from one single
trace. This task will take the DAGs formed by the
events of different traces and will summarize them
by aggregating traces with the same tags or events,
so that we can better understand the topology and
paths of these graphs.

There are two more tasks we want to support, but
may be out of scope for the project so we are leaving
these tasks as stretch goals. The first task is cre-
ating a dependency graph using the processes in a
trace and the second task is adding source code in-
tegration to our tool. The process name attribute
in our dataset gives the name of a service in a mi-
croservice. Developers building distributed systems
are interested in understanding the structure of the
microservice architecture they are building. We want
to consume the list of events in a trace and use the
process name attribute in an event to build a graph
that links processes that trigger other processes. This
information will be presented to developers so that
they can discover the dependencies that build their
microservices. The second task consists of using the
src line and file path attributes to locate the line in
the source code that triggered an event. We will do
this by providing a hyperlink to the file and line in
the github repository.

2



Attribute Type Description
id Categorical Unique identifier of an event
trace id Categorical Unique identifier of the trace to which the event belongs
process id Categorical Unique identifier of the process on which the event occured
thread id Categorical Identifier of the thread in a process on which the event occured
hrt Quantitative High Resolution (ns) Unix Timestamp
label Free-Form Text Developer-added annotation for the event
full path Categorical Full path of the file in the source code where the event was logged.

source line Categorical
Line in the source code where the event was logged. Takes the format of
Full path:Line number.

Table 2: Attributes of an event

4 Scenario

• Scenario 1: A developer wants to find out why
two similar requests have very different comple-
tion times. The developer will select the two
traces corresponding to the requests. After the
traces are selected, our tool will use the events
of these traces to generate a view showing the
differences between the traces as well as show-
ing the context and timing of the original re-
quests. This will allow the developer to analyze
and identify why 2 similar requests have different
completion times.

• Scenario 2: A developer wants to find out why
requests on Monday are slower than the requests
on Tuesday. The developer will make 2 differ-
ent selections - selection of traces from Monday
and selection of traces from Tuesday. Our tool
will aggregate the 2 selections into representative
graphs and then show the difference of these two
aggregate traces. This will allow the developer to
possibly figure out a high-level change between
the request execution from Monday to Tuesday.

• Scenario 3: A developer wants to analyze why
a given trace is anomalous as compared to some
of the previous traces. To do this, the devel-
oper will first create a selection of traces that
will be aggregated down into 1 trace. The de-
veloper will then select the anomalous trace and
create a comparison between the anomalous and
the representative trace. Our tool will show the
difference between the 2 traces and allow the de-
veloper to figure out why a particular trace is
anomalous.

• Scenario 4: A developer wants to understand
the communication load between different ser-

vices of the system. Our tool will show the de-
veloper an overview graph that shows how often
2 services in the distributed system communicate
with each other. This will allow the developer to
figure out how an addition of a new service would
increase the load on each service.

5 Proposed Solution

The events of a trace will be transformed into a node-
link graph. One possible idiom for trace compari-
son, is to compare the graphs formed by the events
of different traces by partitioning them into side-by-
side views. Another possible idiom is showing the
diff of the 2 graphs whilst still preserving the origi-
nal graphs to provide some sort of context. Because
of the limited screen space of a computer monitor,
we will allow at most two graphs to be compared at
one time. Even though our tool will only allow two
graphs to be compared at once, users will still be able
to compare multiple traces by aggregating traces that
go through the exact same nodes into one graph. In
other words, traces that have the same structure can
be aggregated into one graph. This aggregation pro-
cedure will allow us to make comparisons that involve
many traces while only using two DAGs. The links of
the graph will be saturated according to the average
time it takes for the event in the end of the link to
complete. We will also use colour hue to identify the
process name of each event. A preliminary sketch of
this visualization can be seen in Figure 1.

We will use a similar approach to create the service
dependency graph. To create the dependency graph
for one trace, we will transform the list of events
into a DAG represented by a node-link graph. All
the events with the same process name will be ag-
gregated into the same node. In this representation,

3



Figure 1: Example of a comparison task where we
compare one task that calls Postgres and another that
calls Redis. The trace that called Postgres triggers
slow events (represented by the red links) and triggers
more events in general.

the aggreated node will represent a service in a mi-
croservice. The links to the node will be saturated
according to the amount of time it takes for all the
events in a service to complete. A preliminary sketch
of this visualization can be seen in Figure 2.

At the moment, our proposed solution for source
code integration does not have a specific visualization
in mind. We are thinking about providing a link to
the file and line in the github repo corresponding to
the selected event in a trace. At least initially, we
are not going to do any complicated visualization to
accomplish the source code integration task.

6 Implementation Approach

Our visualization tool will be a webapp. We will host
a backend written in Go that will serve requests from
a client. The frontend will be written in javascript.
We will use D3 to manipulate the data served by our
backend and to create the visualizations necessary to
fulfill our comparison tasks.

7 Schedule

We are prepared to spend 100 hours in total, 85 of
which we have specified in Table 3. We are keeping
15 hours as buffer time for tasks that might require
extra time.

Figure 2: Example of an aggregation task where
events with the same process name get aggregated
into the same node.

8 Expertise

Both Matheus and Vaastav have experience with the
problem domain. Vaastav has been working on dis-
tributed systems for years and has participated in
many different projects in the area. Furthermore,
his recent research has investigated tracing in dis-
tributed systems. Matheus also has experience with
distributed systems through coursework, research as-
sistanships and graduate research. Although, tracing
is a new topic for him, he has found it to be an in-
teresting area that can be useful for debugging and
comprehending the interactions of large networks of
computers.

9 Related Work

Jaeger [1] is an open-source distributed tracing
project that provides libraries for instrumenting dis-
tributed systems in different languages as well as a
frontend for viewing the traces produced from these
systems. Jaeger has vis idioms for visualizing a sin-
gle trace, for visualizing the dependencies between
services of the system, as well as an idiom for com-
paring 2 different traces. However, it doesn’t have
any idiom for viewing an aggregate form of multiple
traces or for comparing groups of traces.

LightStep [2] is a start-up company that creates so-
lutions for real-time tracking of requests and metrics
in large-scale distributed systems. LightStep has vis
idioms for visualizing the structure of a single trace,

4



Task Est Time Deadline Description
Project Review 1 2 Mon, Nov 18 Prepare slides
Project Review 2 2 Mon, Dec 2 Prepare slides
Implementation 55 Fri, Dec 16 Completed viz tool
- Go backend 4 Fri, Nov 8 Implement a backend server that responds to requests about dataset
- Project frontend 6 Tue, Nov 11 Set up the frontend including dataset selection and selecting groups of traces (allows selection and filtering of traces based on their attributes)
- Main Viz (Comparison) 25 Mon, Dec 2 Implement and design viz for capturing 2 DAGs while preserving content
- Main Viz (Aggregation) 10 Thu, Nov 20 Implement and design viz for aggregating traces
- Stretch Viz (Dependency graph) 5 Fri, Dec 6 Design tool to visualize the communication dependency graph between services
- Stretch Viz (Src Code Integration) 5 Fri, Dec 6 Link each event in trace to line and source code
Presentation 10 Mon, Dec 9 Prepare slides + video (demo)
Final Paper 16 Fri, Dec 13 Finalize paper

Table 3: Project milestones

for visualizing the critical path of a single trace, and
for visualizing various metrics collected for multiple
traces. Like Jaeger, LightStep also lacks a viz id-
iom for viewing aggregate traces and for comparing
groups of traces.

ShiViz [3] is an interactive visualization tool that
visualizes communication graphs from distributed
system execution logs. As ShiViz is designed for vi-
sualizing logs and not individual traces, ShiViz does
not support comparisons of multiple traces.

With TraViz, we want to address some of the short-
comings of existing tools by providing a way for the
users to compare the structure of a group of traces
as well as integrate the traces with source code to
provide more context for debugging.

References
[1] Jaeger - distributed tracing system. https://www.

jaegertracing.io/. Accessed: 2019-11-04.

[2] Lightstep. https://lightstep.com/. Accessed: 2019-11-
04.

[3] Shiviz. https://bestchai.bitbucket.io/shiviz/. Ac-
cessed: 2019-11-04.

[4] Y. Gan, Y. Zhang, D. Cheng, A. Shetty, P. Rathi,
N. Katarki, A. Bruno, J. Hu, B. Ritchken, B. Jackson,
et al. An open-source benchmark suite for microservices
and their hardware-software implications for cloud & edge
systems. In Proceedings of the Twenty-Fourth Interna-
tional Conference on Architectural Support for Program-
ming Languages and Operating Systems, pages 3–18. ACM,
2019.

[5] L. Lamport. Time, clocks, and the ordering of events
in a distributed system. Communications of the ACM,
21(7):558–565, 1978.

5


