
TraViz: Visualization of Traces in Distributed Systems

Vaastav Anand and Matheus Stolet

Fig. 1. TraViz overview layout, showing a filtered selection of distributed traces using filters on distributions of multiple
dimensions of the distributed traces dataset.

Abstract— In this work we present TraViz, an interactive visualization tool for exploring and analysing distributed traces
to troubleshoot and debug performance problems in distributed systems. Through the use of composite filtering of
multiple dimensions of the dataset, TraViz provides developers an easy to use way to find outlier traces. With TraViz’s
traceview swimlane idiom, the users can drill down into a single trace to analyze the trace for performance issues at the
detail level of an operating system thread. TraViz’s comparison idiom allows users to compare the Graphical structure
of 2 traces of interest to highlight the key differences between the traces. The aggregation idiom allows users to find
uncommon occuring events across traces by constructing a luminance coded super graph of all the distributed traces.
Additionally, TraViz is the first visualization tool that provides an integrated view of the static source code of the system
with dynamic information collected about the system via distributed traces which can help the users in identifying
locations in the source code that would be ideal for performance optimizations.

Index Terms—Distributed Tracing, Graph Comaprison, Graph Aggregation, Source Code Integration

1 Introduction

Distributed systems are prevalent in society to the ex-
tent that billions of people either directly or indirectly
depend on the correct functioning of a distributed sys-
tem. From banking applications to social networks, from
large-scale data analytics to online video streaming, from
web searches to cryptocurrencies, most of the success-

Manuscript received xx xxx. 201x; accepted xx xxx. 201x.
Date of Publication xx xxx. 201x; date of current version xx
xxx. 201x. For information on obtaining reprints of this
article, please send e-mail to: reprints@ieee.org. Digital
Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

ful computing applications of today are powered by dis-
tributed systems. The meteoric rise of cloud computing
in the past decade has only increased our dependence on
these distributed systems in our lives.

Tasks like monitoring, root cause analysis, performance
comprehension require techniques that cut across compo-
nent, system, and machine boundaries to collect, corre-
late, and integrate data. Distributed Tracing is one such
cross-cutting technique that correlates events across the
system to a specific request by propagating a unique con-
text per system with the request. A trace represents the
path of one request through the system and contains in-
formation such as the timing of requests, the events exe-
cuted, and the nodes where these events were executed.
Moreover, traces can be used to identify slow requests and
understand the difference between request executions.



Although distributed traces carry vital information for
debugging and for general system understanding, there
have been question marks against the usability of dis-
tributed tracing [10, 6]. This has been primarily due to
the lack of good analysis tools for analysing the datasets.
Specifically, existing visualization tools don’t provide an
interface for exploring the dataset of traces and find-
ing potential outliers. Additionally the tools don’t have
a way of showing structural differences between traces
and structural similarities across a group of traces. Dis-
tributed Traces are such a rich source of data that can be
useful for debugging and even resource allocation but ex-
isting tools have limited the usability of distributed trac-
ing as these tools have barely scratched the surface of the
plethora of analysis tasks that can be carried with the
data available in distributed traces.

To rectify the shortcomings of existing analysis tools
and to make distributed tracing more useful, in this pa-
per, we present a new visualization tool called TraViz
to analyze and explore datasets of distributed traces.
TraViz exposes an exploration dashboard which allows
the users to find outlier traces by filtering across dis-
tributions of multiple dimensions of the trace dataset.
TraViz also integrates the performance information with
the source code information of the distributed system,
highlighting files and lines in the source code that ap-
pear the most across traces. TraViz also provides idioms
for comparing two different traces as well as aggregat-
ing multiple traces into a single super-trace. To provide
the users with a sense of familiarity, TraViz also pro-
vides popular single-trace visualizations that are preva-
lent in state-of-the-art distributed tracing visualization
tools. With the use of a tiny informal user study, we show
that TraViz achieves our goals of improving the usabil-
ity of distributed tracing through enriching the analytical
power of the users tasked with analyzing the distributed
trace datasets.

2 Related Work

Jaeger [1] is an open-source distributed tracing project
that provides libraries for instrumenting distributed sys-
tems in different languages as well as a frontend for view-
ing the traces produced from these systems. Jaeger has
vis idioms for visualizing a single trace, for visualizing
the dependencies between services of the system, as well
as an idiom for comparing 2 different traces. However, it
doesn’t have any idiom for viewing an aggregate form of
multiple traces or for comparing groups of traces.

LightStep [2] is a start-up company that creates so-
lutions for real-time tracking of requests and metrics in
large-scale distributed systems. LightStep has vis idioms
for visualizing the structure of a single trace, for visualiz-
ing the critical path of a single trace, and for visualizing
various metrics collected for multiple traces. Like Jaeger,
LightStep also lacks a viz idiom for viewing aggregate
traces and for comparing groups of traces.

ShiViz [3] is an interactive visualization tool that vi-
sualizes communication graphs from distributed system
execution logs. As ShiViz is designed for visualizing logs
and not individual traces, ShiViz does not support com-
parisons of multiple traces.

The current state-of-the-art visualization tools for dis-
tributed tracing have historically focused more on visual-

izing the structure and performance characteristics of the
traces using a waterfall idiom where each process in the
trace is modeled as a separate level in the waterfall. How-
ever, these tools don’t provide a idiom for finding outlier
traces and have very rudimentary visualizations for com-
paring different traces which are tasks that target users
actively wish to accomplish. With TraViz, we address
some of the shortcomings of existing tools by providing a
way for the users to compare the structure of two traces,
aggregate a group of traces, and integrate the traces with
source code to provide more context for debugging. We
also provide an outlier exploration dashboard that allows
the users to filter along multiple dimensions of the dataset
to quickly explore the dataset and find possible outlier
and erroneous traces.

3 Data Abstraction

We have 2 datasets that we will be visualizing using
TraViz. The first dataset is called HDFS and contains the
collection of traces and collection of processes from
a Hadoop file system used for distributed storage and big
data processing and the corresponding source code.
The second dataset is called socialNetwork and was ob-
tained from the DeathStarBench open-source benchmark
for cloud microservices [5]. It contains the collection of
traces, collection of processes as well as the corre-
sponding source code. Each distributed system com-
prises of multiple services that run on machines as differ-
ent processes. The HDFS dataset has a total of 71,001
traces and 18 processes. The socialNetwork dataset has
a total of 22,286 traces and 20 processes.

We discuss the attributes of each trace, process, and
source code in detail below.

3.1 Process

The process entity represents a service running in the dis-
tributed system. The attributes for Process are shown in
Table 3.1. In addition to the attributes listed, each pro-
cess also comprises of multiple threads which corresponds
to an OS or Language Runtime level thread.

3.1.1 Thread

Each thread has a categorical attribute tid, which is a
unique identifier for a thread within a process.

3.2 Trace

A trace represents a request from a client to a ser-
vice and shows the path of the request through the dis-
tributed system. A trace has five attributes: id, duration,
start stamp, list of tags, and list of events.

• id of the trace is a categorical attribute used to iden-
tify a trace.

• duration of the trace is the total time taken to service
a request.

• start stamp is the unix timestamp of the time when
the trace was started.

• list of tags is a list of human defined keywords that
serve as the metadata for the trace. There are on
average two tags per trace in both datasets, but the



Attribute Type Description HDFS Range/Cardinality socialNetwork Range/Cardinality
id Categorical Unique identifier of a process 18 20
name Categorical Name of the service the process is running 4 13
host Categorical Name of the machine on which the process is running 9 13

Table 1. Attributes of a Process

socialNetwork dataset has a total of 8 different tags
and the HDFS dataset has a total of 22285 different
tags.

• list of events attribute is a list of the events that
happened in a trace. The events in the list are par-
tially ordered [7], with events that caused another
event preceding the caused event in the list. Such a
partial causal relationship between the events forms
a DAG.

For the socialNetwork dataset, the number of events
per trace range from 3 to 398 with a mean of 99 events.
For the HDFS dataset, the number of events per trace
range from 0 to 9697 with a mean of 1427 events.

3.2.1 Event

Events are important things that happen in a system,
such as acquiring a lock, sending a request to another
server, or performing an update. These events are defined
by the developer as instrumentation in the source code.
Events can be considered as anything a developer thinks
is useful enough to log. The attributes of an event are
shown in Table 2.

4 Tasks

We have identified a total of six tasks that we want to
support with our viz tool. These tasks are finding out-
liers and providing an overview of the dataset, integrating
tracing data to the source code, analysing a single trace,
understanding the dependencies between services in a dis-
tributed system, comparing two traces, and aggregating
multiple traces. Each task is clarified through an example
below.

Scenario 1: Overview and finding outliers
A developer wants to find requests that are slower than

usual in a distributed system. This information should
be consumed by the developer in a way that helps iden-
tify what traces are worthy of a detailed analysis. For
example, identifying unsually slow requests is useful at
selecting what traces should be inspected to understand
the path of their requests.

Scenario 2: Integrating with the source code
A developer wants to locate files that are highly active.

This information can be used to understand what areas
of the source code are responsible for the activity in the
system, and thus require more attention. These insights
can be used to alert developers that new code to those
files should be thoroughly tested and reviewed, since it
belongs to a critical part of the system. The developer
should be directed to the source code once a file of interest
is identified.

Scenario 3: Analyzing one trace
A developer wants to have detailed information on a

request. Tracing data can be consumed to reveal informa-
tion such as the path of the request, the time the events
in a request were triggered, and what threads executed

a request. This information can reveal detailed system
information that can be used to optimize the code.

Scenario 4: Finding service dependencies
A developer wants to find how many services commu-

nicate with a specific service. This task entails locating
the node in a graph representing the service of interest,
and following the links from that service to other services.
This information can be used to identify the services in a
microservice that are dependent in many other services,
which can be useful in helping developers find the services
that should be refactored to minimize dependencies.

Scenario 5: Comparing traces
A developer wants to compare two requests to under-

stand why one is faster than the other. This task takes
the shape of deriving metrics to highlight similarities and
differences between the events in both traces. This in-
formation can then be presented to the user in a way
that the differneces are discovered, while still maintain-
ing enough contextual information from both traces to
understand the path of the request.

Scenario 6: Aggregating traces
A developer wants to summarize the information on

multiple traces with the intent of revealing trends in the
data. This task takes the form of aggreagating similar
traces into a graph, so the topology of these aggregated
traces can be visualized. Aggreagating traces is a useful
task for distributed systems developers because it helps
condense the information of multiple requests into a sum-
marized format that can be consumed for analysis.

5 Implementation Approach

The Implementation of our solution consists of 3 parts:
(i) MySQL database, (ii) Backend REST API server im-
plemented in Go, and (iii) Frontend React WebApp that
implements our visualization idioms.

The MySQL database contains 4 different tables. The
4 tables are the overview, sourcecode, tags, and depen-
dencies table. These tables contain values for various de-
rived attributes that we make use of in our idioms. The
database setup code is 39 lines of MySQL.

The Go Backend is responsible for processing the raw
JSON format of distributed traces and populating the ta-
bles created in the MySQL database. The backend also
hosts a REST API server to service requests from the
frontend which queries over the database to obtain infor-
mation about the traces. The backend implementation
also contains a minimal graph kernel library for comput-
ing the similarities between 2 graphs. Specifically, we im-
plemented the Weisfeiler-Lehman graph kernel [9]. The
Go Backend, including the graph kernel library, is imple-
mented in 1600 lines of code.

The frontend is a React web application where we im-
plement our visualization idioms. We use d3 to imple-
ment our viz idioms. We make use of the dc and crossfil-
ter libraries to implement our overview and source code
dashboard to provide linked views. We use the react-d3-



Attribute Type Description
id Categorical Unique identifier of an event
trace id Categorical Unique identifier of the trace to which the event belongs
process id Categorical Unique identifier of the process on which the event occured
thread id Categorical Identifier of the thread in a process on which the event occured
hrt Quantitative High Resolution (ns) Unix Timestamp
label Free-Form Text Developer-added annotation for the event
full path Categorical Full path of the file in the source code where the event was logged.

source line Categorical
Line in the source code where the event was logged. Takes the format of
Full path:Line number.

Table 2. Attributes of an event

graph library to implement our graph-based visualization
idioms. Our swimlane visualization idiom for showing a
detailed view of a single distributed trace is based on the
visualization idiom used by X-Trace server [4, 8] as we
believe it is very effective and very useful in providing de-
tailed performance hints to the developers. Our frontend
implementation is 3000 lines of javascript and css on top
of the libraries we used.

6 Solution

Traviz accomplishes six tasks. These tasks are finding
outliers and overviewing the dataset, integrating source
code and tracing data, extracting a detailed view of an
individual trace, analyzing the dependencies between the
services in a distrbuted system, comparing two traces,
and aggregating multiple traces into a single visualiza-
tion. Our solution to each one of these tasks is described
in the subsections below.

6.1 Outliers and Overview

For this task we consume a set of traces and identify
outliers and patterns. We provide a visual representation
of the distribution of the number of events in a trace,
trace duration, and date of a trace. We achieve this by
using crossfilter to display the distributions in a bar chart
and arranging the tracing data in a table.

To reduce the cognitive load on the user, we reduce the
number of items on display by using crossfilter to select
areas in the distribution charts, which causes the data
table to be filtered accordingly. For example, if a user se-
lects the area between 1000ms and 2000ms in the latency
distribution chart, the table will only display traces that
have a duration between 1000ms and 2000ms. The ta-
ble can also be sorted to help users quickly find traces.
Visually representing the distributions in bar charts and
filtering the data from these distributions allows users
to swiftly find outliers. For example, traces with more
events than usual can be quickly identified from the bar
chart and selected using our filtering functionality.

Outliers and Overview
What: data
- A collection of traces
Why: tasks
- Find outliers
- Identify patterns
How: reduce
- Filter items using attributes such as number of
events, duration, and date of a trace.
How: show
- Display traces on table that can be sorted and fil-
tered.

6.2 Source Code Integration

Our source code integration tool consumes traces and de-
rives the number of events triggered by a line in the source
code. This tool is useful at identifying what files - and
lines in the source code of that file - produce the most
events. Developers can use the source code integration
tool to identify what areas of their code are heavily uti-
lized.

Our source code integration tool uses two bar charts
to encode the relevant information. One of the charts ag-
gregates the total number of events in a file and displays
one bar per file. If a user clicks on the bar for one of the
files, Traviz displays another bar chart adjacent to it that
reveals the number of events in each source code line of
the file. In both charts, we encode the number of events
with the lenth and luminance of the bar, where higher lu-
minance means that more events spawned from that file
or source code line. To complete the source code integra-
tion, Traviz allows users to click on a bar in the source
code line chart. A mouse click causes the application to
redirect the user to the line in a Github repo hosting the
project being visualized.



Source Code Integration
What: data
- A collection of traces
Why: tasks
- Identify what files produce events
- Identify what lines in a file produce the most or least
events
How: display
- Display number of events in a file and number of
events originating from a line in the source code using
bar charts
How : encode
- Encode number of events in a file and number of
events originating from a line in the source code using
the size of the bar.
- Encode number of events in a file and number of
events originating from a line in the source code using
the luminance of the bar.

6.3 Individual Trace Analysis

The individual trace analysis tool complements the
overview tool and allows the details of a specific trace
to be analysed. This tool displays the timestamp of the
events in a trace, the thread where an event was executed,
and the events that originated events in other threads.
This tool is useful for a distributed systems developer be-
cause it allows a trace to be dissected, so that the path
of a request can be observed. The individual trace anal-
ysis tool encodes each thread as a a lane, the time of an
event as the position on the x-axis, and the thread of an
event as the position on the y-axis. Furtermore, if an
event triggered an event in another thread, we show this
relationship with a connecting line.

Individual Trace Analysis
What: data
- One trace
Why: tasks
- Observe the timing of events in a trace
- Identify events that triggered events in other threads
How: encode
- Encode each thread as a lane
- Encode the time of an event as the position of a point
on the x-axis
- Encode the thread of an event as the position of a
point on the y-axis
- Identify events that triggered events in other threads
with a connecting line

6.4 Service Dependency Analysis

The service dependency analysis derives the total number
of messages issued by a service. This tool is important
for comprehending distributed systems because it allows
developers to understand the dependency relationship be-
tween services. For example, in a micro-service architec-
ture, the dependency graph helps understand what ser-
vices talk to each other and what services talk to the most
services. To visualize the dependencies, we arranged the
services into a node-link graph, where each service is a
node, and the dependency is a link between the nodes.
We also encoded the degree of each node as the area of a

circle, so that services that talk to many services can be
easily recognized.

Service Dependency Analysis
What: derived data
- Total messages issued by a service
Why: task
- Understand the dependency between services
How: arrange
- Arrange services into a node-link graph
- Services are represented as nodes
- Dependencies between services are represented as
links between nodes
How: encode
- Encode the amount of dependencies in a service with
the area of the node

6.5 Trace Comparison

In this tool we take two traces and merge them in a way
that the user can indentify the differences and similarities
between the traces. Understanding the differences and
similarities between a trace can help developers identify
why some requests take longer than others.

To build this tool we assigned each event in both traces
a group between one and three. The events are arranged
into a node-link graph, where each event is a node and the
link encodes the parent-child relationship between events.
We encode group three nodes as squares and groups one
and two as circles. We also encode the group a node be-
longs to using hue. Group three nodes are aggreagated
together, so that the total number of nodes, and conse-
quentially cognitive load, are reduced. Users can disag-
gregate group three nodes if they want to take a look
at the full graph. If users want to look at the details
of an event, they can click on a node, which causes the
attributes of the selected event to be displayed on the
side.

Trace Comparison
What: data
- Two traces
Why: tasks
- Identify differences between traces
- Observe patterns
How: arrange
- Arrange events into a node-link graph
- Events are represented as nodes
- Parent-child relattionships between events are repre-
sented as links between nodes
How: encode
- Encode nodes in group 3 as squares and nodes in
groups 1 and 2 as circles
- Encode the group of an event using hue
How: aggregate
- Aggregate group 3 nodes to reduce the size of the
graph

6.6 Trace Aggregation

The trace aggregation tool helps users see the big pic-
ture. It consumes a collection of traces and arranges them
into a node-link graph, where nodes represent events and



links represent the parent-child relationships between the
events. To condense the information from multiple traces
into a more manageable graph, we aggregate the events
from the same source code line into one node. We also
visualize the number of events in a node by using lumi-
nance, where high luminance means a node is responsible
for many events, and low luminance means that a node
is responsible for few events. A node can be selected by
clicking, which results in detailed information about that
event - such as the event id, timestamp, and thread id - to
be displayed. The aggreagation tool also allows the struc-
ture from multiple traces to be analysed, while reducing
the amount of nodes on display.

Trace Aggregation
What: data
- A collection of traces
Why: tasks
- Visualizing the big picture
- Analyzing multiple traces
How: arrange
- Arrange avents into a node-link graph
- Events are represented as nodes
- Parent-child relattionships between events are repre-
sented as links between nodes
How: aggregate
- Aggregate events from the same source code line as
one node
How: encode
- Encode number of events in a node with luminance
- High luminance means a node is aggregating many
events
- Low luminance means a node is aggregating few
events

7 Results

7.1 Use Case 1: Outlier detection

The user has received multiple bug reports from different
customers about some requests taking tens of seconds to
complete when they usually take fewer than a second to
complete. To investigate, the user opens up TraViz and
sees the distribution of the traces. The user can quickly
see that there are a small number of traces that have
indeed taken unusually long as compared to other traces.
The user selects a specific duration range to filter so that
they can only see the list of traces that have their duration
within that range. To further narrow down, the user
selects an events range to further reduce the number of
traces as shown in Figure 5. The user can now start
performing root cause analysis.

7.2 Use Case 2: Performance Analysis on a single trace

Now that the user has a picked a filtered set of traces,
the user can take a look at an individual trace to figure
out the root cause of the performance issue. The user
clicks on one of the traces from the filtered list to see the
detailed view of the trace ??. From a cursory look, the
user can identify which thread takes the longest time to
complete its execution and correctly identify the set of
events that caused delay on the trace.

7.3 Use Case 3: Finding differences in pair of traces

The user wants to compare the structure of two of the
outlier traces from the filtered list in Figure 5 to see
if the outlier traces are very different or not. The user
selects two traces of their choice and presses the compare
button to produce a comparison graph between the traces
as shown in Figure 4. The comparison graph has a lot
of nodes which suggests that the selected traces are quite
different. The user can click on circular nodes to look at
details of the event that the node corresponds to. The
user is mostly confused with this visualization due to the
hairball effect.

7.4 Use Case 4: Finding similarities in groups of traces

The user wants to aggregate some of the outlier traces
from the filtered list in Figure 5 to generate a super
graph that represents the structure of outlier traces. The
user selects 20 traces using the select all button. The
user then clicks the Aggregate button which produces the
graph shown to the user in Figure ??. The user notices
that most nodes have bright luminance which suggests to
the user that most of the nodes don’t appear in a lot of
traces. However, the user notices one dark node which
the user clicks to see the details of the event which is
common across a large proportion of the traces. Seeing
the aggregate graph reminds the user of spaghetti and
meatballs as the user is not able to fully understand what
the aggregate graph is telling the user. The user wishes
for a better graph layout in the next update of TraViz.

7.5 Use Case 5: Source Code Optimization

The user wants to know what files in the source code,
Specifically what lines in the source code are producing
the most number of events in traces as well as producing
the least number of events in traces. The user clicks on
the Source tab on the navigation bar to land at the source
page to see the distribution of events across files in sorted
order as shown in Figure 6. To view the distribution of
events across the lines in a particular file, the user clicks
on the bar with the name of the target file. This gives
rise to another chart which shows the distribution of the
events across lines in that file in sorted order as shown in
Figure 7. To view the line in the context of the source
code, the user clicks on the bar of that specific line to
get redirected to that specific line in the specific file on
github.

7.6 Use Case 6: Service Dependency Analysis

The user wants to know how the different services in the
distributed system interacts with each other. Specifically,
the user wishes to know the load each service is receiving
from all the other services in the system. To accomplish
this, the user clicks on the Dependency tab on the nav-
igation bar to land at the dependency page to see the
dependency graph as shown in Figure 8. To find out
detailed information about each service, the user clicks
on the node with the particular service to bring up the
detailed view of the service which shows the number of
messages received by that service from every other ser-
vice, and the number of messages sent by that service to
every other service.



Fig. 2. Example of filtering along the Num Events and Duration dimension to look at one specific set of outliers

Fig. 3. Swimlane view of trace ID AB2EC0A5C798E809 from the DeathStarBench dataset



Fig. 4. Comparison of 2 outlier traces from the DeathStarBench dataset

Fig. 5. Aggregation of 20 outlier traces from the DeathStarBench dataset into a single graph



Fig. 6. The distribution of the events across the files for the DeathStarBench dataset, with colour showing the number of lines from
the file that produced these events.

Fig. 7. The distribution of events across the lines for the UniqueIdHandler file



Fig. 8. The dependency graph shows how the services in the system interact with each other. The detail view shows the messages
received and sent by the nodes running that specific service from the nodes running other services. This figure shows the breakdown
for the ComposePostService from the DeathStar Microbenchmark suite.

7.7 Informal User Study

To evaluate the efficacy of TraViz, we conducted a very
Informal user study with 2 target users. One of the target
users is one of the leading experts in distributed tracing
whereas the other user is an engineer at a large internet
company where part of their job is to analyze distributed
traces. Due to geographical and time constraints, the user
study had to be done asynchronously where the target
users were given a deployed link of our tool and were
asked to provide feedback regarding the user experience.

Both of the target users liked the overview dash-
board. Specifically, the leading expert stated ”Incorpo-
rating high-level metrics side-by-side with trace search
and selection is a good idea and I like the dashboard you
came up with”. The source code view also garnered pos-
itive reviews as both the users thought this is something
that they would like to use with their data. The source
code view piqued the interest of the expert user as they
thought it had the potential of getting very deep as it
was combining the static source code of the system with
dynamic information about actual executions. The other
user thought the most useful visualization was the indi-
vidual trace view as it allowed them to view time spent by
each thread individually. The expert user thought that
the dependency graph was useful but commented that
the graph should be directed as that is what users expect
to see.

For the trace comparison and aggregation idioms, there
was a general sense of confusion across both the users.
One of the users was particularly confused as to what
each of the nodes meant in the graph - whether the nodes
were showing performance information or structural dif-
ferences or both. The expert user commented that the
comparison and aggregation graphs have some underly-

ing ordering which wasn’t being visualized. Although,
they did acknowledge that getting the ordering right for
comparisons and aggregations is a hard task.

Given the feedback from the users, we believe that
TraViz is partially successful in its endeavor of being the
most usable distributed tracing visual analysis tool.

8 Discussion

We consider TraViz to be partially successful at the time
of writing. We believe that TraViz’s exploration dash-
board is a very good starting point for the users to find
potentially outlier traces and then select such traces for
further analysis. Additionally, as far as we know, TraViz
is the first visualization tool to integrate the static source
code information with dynamic performance information
captured in the traces. The current source code integra-
tion idiom is just a starting point and we believe there
are other interesting ways of visualizing and integrating
source code information with distributed traces.

We consider TraViz to only be partially successful as
we believe that the current graph comparison and aggre-
gation tools are easily usable or understandable. This
is primarily due to the fact that our current graph id-
ioms don’t have a good layout strategy for laying out the
nodes and edges on the screen causing our idioms to suf-
fer from the dreaded ”hairball effect”. Finding a good
layout strategy is akin to finding a needle in the haystack
but we believe that we will eventually find one that fits
our use case.

9 Future Work

Although, we believe that TraViz already provides bet-
ter visualization idioms for analysing distributed traces,



TraViz is far from ready from being deployed in a real
world setting.

The main goal for our future work is to improve upon
our graph comparison and aggregation idioms so as to
remove the ”hairball effect”. This requires using bet-
ter layout algorithms for visually laying out graphs on
the screen. We have identified potential libraries like cy-
toscape and d3-dag that provide better layout algorithms
but we haven’t been able to get those to work yet.

Based on the feedback received from the target users,
there are some minor improvements that we would like to
make in our existing visualization idioms. Specifically, for
the swimlane view of the trace, we would like to further
encode the ID of the process as the color of the swim-
lane for the thread. This would help users identify which
process a thread belongs to and understand when the re-
quest crosses process boundaries. Additionally, we would
like to add a small detail window to the swimlane idiom
that shows the details of an event when the correspond-
ing node is clicked on the main visualization. We would
also like to switch the dependency graph to be a directed
graph as that is what our target users are more accus-
tomed to a directed dependency graph.

Additionally, we want to design idioms for two more
tasks. The first task is the comparison between a sin-
gle trace and an aggregation of traces that would help
users understand how a single, anomalous trace is differ-
ent from a set of normal looking traces. The second task
is the comparison between two different aggregations of
traces. This would help understand developers to under-
stand the differences in between clusters of traces.

Lastly, we believe that conducting a formal user study
or at least an informal user study with more users would
help in gauging the efficacy and usability of TraViz as a
distributed tracing analysis tool.

10 Conclusion

In this paper we presented TraViz, a tool designed for
analyzing the structural and performance attributes of
distributed traces. TraViz supports 6 different analy-
sis tasks - detection of outlier traces, single trace per-
formance analysis, source code integration with perfor-
mance metrics for future code optimizations, comparison
of 2 traces to detect differences, aggregation of traces to
highlight common structure and find outlier events, and
dependency analysis between different services in a dis-
tributed system. There has been prior research in visual-
izing traces but most of it has been focused on perform-
ing single trace performance analysis. TraViz extends
this by allowing users to explore different traces to find

interesting traces and then perform comparison and/or
aggregation actions on these traces. As far as we know,
TraViz is the first visualization tool that implements a vi-
sualization for combining static source code information
with dynamic information about the system collected via
traces. That being said, we feel that TraViz’s graph visu-
alizations are still not useful to developers in its current
state and require further refinement before they can be
perceived useful.

References

[1] Jaeger - distributed tracing system. https://www.

jaegertracing.io/. Accessed: 2019-11-04.

[2] Lightstep. https://lightstep.com/. Accessed: 2019-11-
04.

[3] Shiviz. https://bestchai.bitbucket.io/shiviz/. Ac-
cessed: 2019-11-04.

[4] R. Fonseca, G. Porter, R. H. Katz, S. Shenker, and I. Sto-
ica. X-trace: A pervasive network tracing framework. In
Proceedings of the 4th USENIX conference on Networked
systems design & implementation, pages 20–20. USENIX
Association, 2007.

[5] Y. Gan, Y. Zhang, D. Cheng, A. Shetty, P. Rathi,
N. Katarki, A. Bruno, J. Hu, B. Ritchken, B. Jackson,
et al. An open-source benchmark suite for microser-
vices and their hardware-software implications for cloud
& edge systems. In Proceedings of the Twenty-Fourth In-
ternational Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, pages 3–18.
ACM, 2019.

[6] M. Klein. Distributed tracing costs are not justified -
a thread. https://twitter.com/mattklein123/status/

1049813546077323264. Accessed: 2019-12-12.

[7] L. Lamport. Time, clocks, and the ordering of events
in a distributed system. Communications of the ACM,
21(7):558–565, 1978.

[8] J. Mace. X-trace server. https://gitlab.mpi-sws.org/

cld/tracing/x-trace-server. Accessed: 2019-12-12.

[9] N. Shervashidze, P. Schweitzer, E. J. v. Leeuwen,
K. Mehlhorn, and K. M. Borgwardt. Weisfeiler-lehman
graph kernels. Journal of Machine Learning Research,
12(Sep):2539–2561, 2011.

[10] C. Sridharan. Distributed tracing — we’ve been doing it
wrong. Accessed: 2019-12-12.

https://www.jaegertracing.io/
https://www.jaegertracing.io/
https://lightstep.com/
https://bestchai.bitbucket.io/shiviz/
https://twitter.com/mattklein123/status/1049813546077323264
https://twitter.com/mattklein123/status/1049813546077323264
https://gitlab.mpi-sws.org/cld/tracing/x-trace-server
https://gitlab.mpi-sws.org/cld/tracing/x-trace-server

	Introduction
	Related Work
	Data Abstraction
	Process
	Thread

	Trace
	Event


	Tasks
	Implementation Approach
	Solution
	Outliers and Overview
	Source Code Integration
	Individual Trace Analysis
	Service Dependency Analysis
	Trace Comparison
	Trace Aggregation

	Results
	Use Case 1: Outlier detection
	Use Case 2: Performance Analysis on a single trace
	Use Case 3: Finding differences in pair of traces
	Use Case 4: Finding similarities in groups of traces
	Use Case 5: Source Code Optimization
	Use Case 6: Service Dependency Analysis
	Informal User Study

	Discussion
	Future Work
	Conclusion

