
TraViz:
Visualization of

Distributed Traces

- Matheus Stolet
- Vaastav Anand

1

What are Distributed Systems?

▶ “A distributed system is one in which the failure of a computer
you didn't even know existed can render your own computer

unusable.”

- Leslie Lamport

2

Distributed Systems are everywhere

● Graph processing
● Stream processing
● Distributed databases
● Failure detectors
● Cluster schedulers
● Version control
● ML frameworks
● Blockchains
● KV stores
● ...

[1] Mark Cavage. 2013. There's Just No Getting around It: You're Building a Distributed System. Queue 11, 4, Pages 30 (April 2013)

▶ Distributed systems
are widely deployed [1]

3

Need for Observability: Ability to answer questions

● Which nodes/services did the request

go through?

● Where were the bottlenecks for the

request?

● What happened at every node/service

to process the request?

● Where did the errors happen?

● How different was the execution of 1

request?

● How do different groups of requests

differ?

● Axes for differences
○ Structural
○ Performance

● Root cause analysis

4

Need for Observability: Ability to answer questions

● Which nodes/services did the request

go through?

● Where were the bottlenecks for the

request?

● What happened at every node/service

to process the request?

● Where did the errors happen?

● How different was the execution of 1

request?

● How do different groups of requests

differ?

● Axes for differences
○ Structural
○ Performance

● Root cause analysis

Distributed tracing can answer these
questions

5

What is Distributed Tracing?

● Each trace represents path of 1
request through the system

● Trace collects and contains timing
info, events across nodes,
processes, and threads.

● Depending on verbosity, may also
contain stack traces.

“Story of a request through a
system”

6

Datasets

● 2 Trace Datasets & respective source code
○ DeathStarBench : https://github.com/delimitrou/DeathStarBench (Modified Version :

https://gitlab.mpi-sws.org/cld/systems/deathstarbench)
○ Hadoop : https://gitlab.mpi-sws.org/cld/systems/hadoop

● DSB : 22390 traces

● Hadoop : 72030 traces

7

https://github.com/delimitrou/DeathStarBench
https://gitlab.mpi-sws.org/cld/systems/deathstarbench
https://gitlab.mpi-sws.org/cld/systems/hadoop

Data Abstraction

8

Tasks

● Outlier Finding + Overview of Dataset

● Source Code Integration

● Timing analysis of a single trace

● Service dependency analysis

● Comparison of 2 traces

● Aggregation of multiple traces

9

DEMO

10

Outlier finding + overview

● What: data
○ Traces

● Why: tasks
○ Find outliers and patterns

● How: reduce
○ Filter items using # events, duration, and

day attributes

● How: show
○ Sortable and filtered table with traces

11

Source code relationship

● What: data
○ Traces

● What: derived attrs
○ # Events triggered by each line of code

● Why:
○ What files are producing events
○ What lines in a file produced the most or

least events

● How: aggregate
○ Aggregate # events from all src code lines

in a file

● How: encode
○ Encode number of events or number of

lines with size of bar
○ Encode number of events or number of

lines with colour of bar
12

Show an individual trace

● What: data
○ 1 trace

● Why:
○ Look at time of events in a trace related

to each other
○ Find parent and child relationships

between events

● How: encode
○ Encode each thread as a lane
○ Encode time of event as position on

x-axis
○ Encode thread of event as position on

y-axis
○ Encode parent/child relationships with

connecting lines

13

Dependency Graph

● What: derived items
○ Total messages issued by a service

● Why:
○ Understand dependency relationship

between services

● How: arrange services into a node-link

graph
○ Service is a node
○ Dependency is a link between nodes

● How: encode
○ Encode degree of a node with area of

circle

14

Compare

● What: data
○ 2 traces

● What: derived
○ For each event add it to group between 1-3

● Why: find difference between traces

● How: arrange events into a node-link graph
○ Event is a node
○ Link is parent-child relationship between nodes

● How: encode
○ Encode group 3 nodes as squares and groups 1-2 as

circles
○ Encode group of event by node colour

● How: aggregate
○ Aggregate group 3 nodes so that it maintains its

structure

15

Aggregate

● What: data
○ Traces

● Why: see the big picture

● How: arrange events into a node-link graph
○ Event is a node
○ Link is parent-child relationship between

nodes

● How: aggregate
○ Aggregate events from same source code line

● How: encode
○ Encode number of events in a node with

luminance
■ High luminance = many events
■ Low luminance = few events

16

Discussion

● Overview page provides a nice way of

exploring the trace dataset.

● First viz tool to provide source code

integration for distributed traces.

● Graph layouts are not great. Suffer from

hairball effect.

● The compare and aggregate idioms are

confusing for users.

17

Future Work

● Better layouts for graph visualizations to

remove hairball effect

● Add detail view for swimlane

● Add viz idiom for comparing 1 trace

against an aggregation of traces

● Add viz idiom for comparing 2 different

aggregation of traces

● Integrate/Replace existing tools :)

● Usability Study

● Integrate it with backend server of

X-Trace tracing system.

18

