

Information Visualization in Software Maintenance and Evolution

Marjane Namavar

Abstract— Software visualization is concerned with the static visualization as well as the animation of software artifacts, such as

source code, executable programs, and the data they manipulate, and their attributes, such as size, complexity, or dependencies.

Software visualization techniques are widely used in the areas of software maintenance and evolution, where typically large

amounts of complex data need to be understood and a high degree of interaction between software engineers and automatic

analyses is required. The present work provides a survey of 23 software visualization systems in the field of software maintenance

and evolution and infers a categorization based on 5 main classes including task, data, data processing, representation and

availability. The results of this survey help to ascertain the current role of software visualization in software engineering from the

perspective of researchers in these domains and give hints on future research avenues.

Index Terms—information visualization, software visualization, software maintenance, software evolution

INTRODUCTION

Extending Roman and Cox's [1] definition of program visualization
to other software artifacts, software visualization can be defined as
the mapping from software artifacts including programs to graphical
representations. Software visualization is needed because software is
invisible. In the simplest case., we may visualize artifacts textually.
More advanced graphical visualization techniques promise to better
help understanding software, usually in combination with techniques
that raise the level of abstraction, reduce the amount of information
to what is needed to perform the task at hand, or to ease browsing the
large information space. However, whether graphical representation
is really superior to textual representation is rarely proven
empirically. There are empirical studies that show evidence that
specific ways of graphical visualization work better than textual
visualization for certain tasks [2]. In other cases, a textual
presentation is likely to be the most appropriate [3, 4]. Nevertheless,
many researchers believe in the value of software visualization. In
particular, in the domains of software maintenance and evolution,
where typically large amounts of complex data need to be
understood, software visualization may play an important role. We
know from empirical studies that maintenance programmers spend
50% of their time simply to understand the software to be changed
[5] and it is plausible that visualization has a substantial positive
effect on the time needed to comprehend large programs.

There are some main questions in this area. What are the
perspectives of researchers in software maintenance and evolution
visualization? What is visualized and how? What types of purposes
are the main ones to apply visualization in this field? Could the
developed visualization systems be accessible by a lot of users for
large projects? What kinds of pre-processing methods are more
popular? In order to find answers to these open questions I conducted
a survey. The results of this survey are presented here and help to
gain an overview of the usage of software visualization in software
maintenance and evolution. The goals of this project are to review
the existing literature focusing on the use of visualization for
software evolution and maintenance. Then, analyzing the data from
empirical experiments under a certain framework. Finally, abstract
gathered information to categorize existing approaches.

 This paper is organized as follows. Section 1 overviews related
work. Section 2 is a brief background. Section 3 presents our
classification model. Section 4 presents the analysis of cases. Section
5 discusses our results. Section 6 concludes the paper.

1 RELATED WORK

There are a limited number of survey papers that are close to this
subfield. I have reviewed some survey papers in a broader field of
software engineering and a few ones in similar subfields. Price et al.
[6] compared 12 tools against 6 desirable features categories: scope,
content, form, method, interaction and effectiveness. The tools were

however not related to a single application area. Maletic et al. [7]
compared 5 software tools along 5 axes: task, audience, target,
representation, and medium. Similar to Price et al., the scope of this
taxonomy and tools is quite broad. Since a tool’s audience strongly
depends on its purposes [7], evaluating similar-purpose tools would
be more insightful [8]. Here, Storey et al. [9] compared 12 tools that
provide awareness of human activities during software development
against the categories of intent, information, presentation, interaction
and effectiveness. In corrective maintenance, Baecker et al. analyzed
three classes of techniques used for debugging [10]: animation,
improved typographic representations, and error sonification.
Sensalire et al. evaluated ten general-purpose software-understanding
tools[11]. None of the above surveys are exactly in the field of
software maintenance and evolution. Also this project is different
from previous work in the way it analyzes all systems under
what/why/how framework systematically.

2 BACKGROUND

Software evolution is an important topic in software engineering and
is referred to as the process of developing software initially, then
repeatedly updating it for various reasons. Software Maintenance is
also the modification of a software product after delivery to correct
faults or improve performance. Both of them generally deal with
large amounts of data, as one must look at whole project histories as
opposed to their current snapshot. Software visualization is the field
of software engineering that aims to help people to understand
software through the use of visual resources. It can be effectively
used to analyze and understand the large amount of data produced
during software evolution and maintenance.

Fig. 1. Five main categories.

3 CLASSIFICATION

Figure 1 shows 5 main categories of this project.

3.1 Category A: Task

Visualization system mainly aim to accomplish following tasks.

 Help to detect code smell: Code smells signal bad programming,
design, or code, and are often used to drive refactoring. Some
visualization systems help with finding code smells either directly or
indirectly.

 Help to analyze execution of the program: Traces are defined as
data gathered during a program’s execution. Some visualization
systems are able to generate or show traces.
 Help to perform debugging: Debugging is the process of finding
and resolving defects or problems within a computer program that
prevent correct operation of computer software or a system. Some
visualization systems do basic debugging, e.g. breakpoints, code
stepping, and simple text watches or they might show higher-level
debugging facts, e.g. bug or test case data.
 Help to analyze user feedback: User feedback is defined by all the
information you get from your customers about whether or not they
are satisfied with your product or service. Feedback could be in the
shapes of ratings or comments. Some visualization systems help to
organize and make sense out of a large amount of user feedback.
 Help to monitor code changes: Developers continuously apply
changes to add features or fix bugs. A lot of visualization systems try
to illustrate these changes and various aspects of them.
 Help to monitor developer activities: With the invent of version
control systems every single activity of developers is recorded with
detailed information. Also, the version of a project at the time of a
specific activity is available. A lot of visualization systems shows
interactions between developers and their contribution to a project.
 Help to track bug reports: A bug report should explain how
exactly the product is broken and there are some tools for bug
tracking. Some visualization systems exploit this information from
issue-trackers to produce insight into the whole bug reporting
process.
 Help to comprehend the structure of a program: A computer
program has different components and when a project becomes very
large, the comprehension of the program’s structure will be more
difficult. Some visualization systems try to visualize the structure of
a program and make this process easier and faster.

3.2 Category B: Data

These are main data types that are input to the visualization systems.
 Source code: The actual textual content of the program
 Packages: Components of the program at the package level
 Classes, objects, interfaces: Components of the program at the
class level
 Functions: Components of the program at the function level
 Test suite and results: The content of a test suite or the result of
running test cases
 Bug report: The information needed to report and track a bug
including text and different states
 Events & sequences: A chain of occurrences to be tracked
 Relationships between code components: Code components have a
variety of relationships together such as containment or calling each
other
 User feedback: The feedback of user in the shape of ratings or
comments
 Metadata: Extra information such as revision data

3.3 Category C: Data Processing

Visualization systems apply following methods to derive data from raw
input data.
 Abstract Syntax Tree: is a tree representation of the abstract
syntactic structure of source code written in a programming language.
It often serves as an intermediate representation of the program that
the visualization system needs to understand the structure of a
program.
 NLP Methods: NLP methods are concerned with the interactions
between computers and human languages, in particular how to
program computers to process and analyze large amounts of natural
language data. Visualization systems might use them to extract
information from textual content written by humans.
 Static Analysis: Static program analysis is the analysis of computer
software that is performed without actually executing programs.
Visualization systems use it to analyze program and infer desired
information.

 Dynamic Analysis: Dynamic program analysis is the analysis of
computer software that is performed by executing programs on a real
or virtual processor. If the visualization system needs information that
would be obtained during the run-time of a program, then uses
dynamic analysis.

3.4 Category D: Representation

Visualization systems take advantage of a wide-range of techniques to
illustrate data and they might/might not display the actual textual
content corresponding to the input data being visualized.
 Technique: Various techniques have been used from different
channels and charts to a variety of reducing, manipulation and facet
methods.
 Textual Content: All software artifacts have a corresponding textual
representation. It indicates whether the visualization system shows the
actual textual content of the input data (whatever it is) being visualized
or not.

3.5 Category E: Availability

Availability means whether the developed visualization system could
be used for a large software project or not and if it is capable of being
integrated into an IDE so that it’s more available to the users.
 Scalability: It demonstrate whether the input data (whatever it is) fed
to the visualization system, could be scaled to a size so that it’s one
million time as large as before.
 Integration: Whether authors explicitly mention that their
visualization system has been integrated into an IDE or not.

4 SURVEYED CASES

For reviewing existing literature 23 papers were gathered. All of
them were from VISSOFT conference under maintenance and
evolution topics between 2003 and 2019. Only design study papers
which have a visualization system with an assigned task as their
central part, were chosen. The next 23 subsections provide a
summarized description and a table for each paper. The table shows
the analysis of a paper through our 5 main categories. The base of
this analysis is the what/why/how framework from [12]. Data, task
and techniques are basically what, why, how parts of the framework
respectively. Each case analysis starts by an image of the main view,
then a brief description and finally a table containing the analysis
information.

4.1 Case 1: A Closer Look at Bugs

Fig. 2. Case1 main view

The main view of the visualization system developed in this paper
[13] is shown in figure 2. In this paper in*Bug has been introduced
which is a web-based software visual analytics platform to visualize
bug reports. It allows users to navigate and inspect the vast
information space created by bug tracking systems, with the goal of
easing the understanding of bug reports in detail and also obtain an
understanding of how bugs are reported with respect to one system
or to an entire software ecosystem. Projects are taken from the bug

tracker FogBugz. Bugs possess complicated life cycles, which makes
them non-trivial to comprehend. Modern non-trivial software
projects use bug tracking systems (also known as bug trackers), such
as Jira and BugZilla, to manage the bugs that are reported. The
repositories created by such bug trackers are a valuable source of
information.
 Bug lifetime panel depicts the bugs contained in the bug
repository, showing their duration (as a horizontal stacked bar chart)
and status (using different colors). Each bug tracking system
proposes a set of statuses that an issue can acquire. These statuses are
grouped into 5 categories with assigned color codes. For example,
orange means the bug is still open but grey means it’s closed. In the
project selection panel users can pick the projects whose bugs they
are interested in. Details panel provides the textual content of a bug
report and all the information reported about the bug report under
focus in the bug lifetime panel. Filter and options panel allows the
user to sort and filter bugs. Status bar shows a quick status of the
application. It displays the total number of the bugs in the repository,
as for the number of bugs currently selected.

Table 1. Case1 analysis

Task Track bug reports

Data

Bug Report
Metadata (information related to bug report)
Events and Sequences (events in one bug’s life
cycle)

Representation

Technique

Encode: Color, Stacked bar
chart
Reduce: Filter
Facet: Partition into multiform
views, Linked highlighting,
Linked navigation, Overview-
detail, Juxtaposed views
Manipulate: Select, Sort

Textual
Content

Y

Availability
Scalability Y

Integration N

4.2 Case 2: ClonEvol: Visualizing Software Evolution
with code Clones

Fig. 3. Case2 main view

The main view of the visualization system developed in this paper [14]

is shown in figure 3. The tool ClonEvol, that has been introduced in

this paper assists in obtaining insight into the state and evolution of a

C/C++/Java code base on project, file and scope level. This is

achieved by combining information obtained from the software

versioning system and contents of files that have changed between

versions. More precisely, the tool combines the version change-logs

with static analysis (of file contents) and clone detection. The

consolidated information is presented to the user in a visual and

interactive manner. The focus of the presented tool lies on scalability

(in time and space) concerning data acquisition, data processing and

visualization, and ease of use. The visualization is achieved with a

mirrored radial tree to show the file and scope structures,

complemented with edges that indicate the clone relations. Different

hierarchies have different colors. Users can scroll through time to

search for events of interest, which are highlighted by the structure

color-map. For visualization a radial tree view is chosen as it can

preserve the space needed for visualization. The nodes of the radial

tree represent the file-scope hierarchy and the edges show clone

relations. A node can be expanded as root of the visualization, to allow

investigation of fine-grained details, e.g. clones between functions.

The structure color-map shows object types in the code base (files,

classes, functions) and the existing clones. It is used to help the user

understand the visualization of the project. The right panel offers

options for selection and filtering to control the visualization.

Table 2. Case2 analysis

Task
Monitor developer activities
Comprehend the structure of a program

Data

Source code
Classes, objects, interfaces
Functions
Metadata (version and clone information)
Relationships between code components

Data (derived) FileTree, ScopeTree

Data Processing Static analysis

Representation

Technique

Encode: Radial tree
with nodes and links,
Color
Reduce: Filter,
Aggregation
Facet: Overview-detail
Manipulate: Select,
Zoom and pan

Textual
Content

N

Availability
Scalability Y

Integration N

4.3 Case 3: CVSscan: Visualization of Code Evolution

 Fig. 4. Case3 main view

The main view of the visualization system developed in this
paper[15] is shown in figure 4. During the life cycle of a software
system, the source code is changed many times. This paper studies
how developers can be enabled to get insight in these changes, in

order to understand the status, history and structure better, as well as
for instance the roles played by various contributors. This paper
presents CVSscan, an integrated multiview environment for this.
Central section is a line oriented display of the changing code, where
each version is represented by a column, and where the horizontal
direction is used for time, Separate linked displays show various
metrics, as well as the source code itself. A large variety of options is
provided to visualize a number of different aspects. The code view
offers a text look at the code. Users can select the code to be
displayed by sweeping the mouse in the evolution view. Vertical
brushing in the code evolution area scrolls through a version’s code,
whereas horizontal brushing over the line-based layout goes through
a given line’s evolution. While the first layer (A) freezes when the
user brushes over an empty region in the evolution view, the second
layer (B) pops-up, and scrolls through the code that has been deleted,
or will be later inserted at the mouse location. This creates a smooth
feeling of scrolling continuity during brushing. In the same time, it
preserves the context of the selected version (layer A) and gives also
a detailed, text level peek, at the code evolution (layer B). Also,
users will have several options to filter and manipulate data which is
being visualized through the left panel.

Table 3. Case3 analysis

Task
Monitor developer activities
Monitor code changes

Data

Source code
Events and Sequences (sequence of commits)
Metadata (<id,author,date,code> for each
version)

Data (derived) Line position, Line status

Data Processing Static analysis

Representation
Technique

Encode: Dense layout, 2D
matrix, Color, Position
Reduce: Filter
Facet: Partition into multiform
views, Juxtaposed views,
Linked highlighting, Linked
navigation, Overview–detail
Manipulate: Select, Zoom and
Pan

Textual
Content

Y

Availability
Scalability Y

Integration Y

4.4 Case 4: E-Quality: A Graph Based Object Oriented
Software Quality Visualization Tool

 Fig. 5. Case4 main view

Fig. 6. Case 4 metrics

The main view of the visualization system developed in this
paper[16] is shown in figure 5. In this paper, a graph based object-
oriented software quality visualization tool called “E-Quality” has
been introduced. E-Quality automatically extracts quality metrics
and class relations from Java source code and visualizes them on a
graph-based interactive visual environment. This visual environment
effectively simplifies comprehension and refactoring of complex
software systems. In E-Quality tool, software is represented as a
weighted labeled digraph G(V, E) where V is the set of vertices that
corresponds to software classes; E is the set of edges that
corresponds to the different types of relations between these classes.
Weights of edges are indicating the strength of relations and labels
are used to identify names of classes and relations. Visual properties
of a node in a graph are its color, size, shape, and fill pattern. Each
quality attribute is mapped to different physical properties of a node.
The user can change mapping scheme by defining different metric
query statements. Main visual properties of an edge in a graph are
direction, thickness, style, and color. E-Quality computes quality
metrics such as cohesion, coupling and complexity. Figure 6
illustrates the various metrics and assigned channels to them. E-
Quality allows filtering out some classes and relations by their name
or specific attributes. The tool has an interactive graph drawing
window, which allows many navigation properties such as graph
editing, rotation, focusing, zooming, etc. The user can modify
relation type colors in order to highlight specific types. All
configurable properties, parameters, and graph models can be saved
in XML format to allow further analyzing by other tools.

Table 4. Case 4 analysis

Task Comprehend the structure of a program

Data
Classes, objects, interfaces
Relationships between code components
Metadata (size)

Data (derived) Coupling, cohesion, complexity

Data Processing Static analysis, AST

Representation

Technique

Encode: Graph, Shape,
Size, Color, Texture
Reduce: Filter, Aggregation
Manipulate: Select, Zoom
and Pan

Textual
Content

N

Availability
Scalability N

Integration N

4.5 Case 5: Evo-Clocks: Software Evolution at a Glance

The main view of the visualization system developed in this paper[17]
is shown in figure 7. Evo-Clocks, the tool developed in this paper,
simultaneously visualizes software structure and the evolution of its
individual components. It uses localized, evolutionary representations
of individual artifacts embedded within a multi-revision representation

Fig. 7. Case 7 main view

of structure that has been merged into a single view. Selective
information hiding, facilitated by simple effective selection and
filtering features, and means to further explore hidden details, enable
the observer to learn more about specific time ranges and metrics
relevant to an exploratory task. A clock is really just a pie chart
where different sectors represent different times in the history of the
project, just like with a regular clock. If all revisions are displayed,
the history begins with the oldest revision at the 12 o’clock position
and runs clock-wise. Around the circle reaching the latest revisions
upon returning to the 12 o’clock position approaching from the left.
Classes are rendered as 1st-level nodes and methods as 2nd-level
nodes (which are initially hidden). All nodes are grouped by their
containing package. Size is determined from the number of lines of
code. They currently use three kinds of links. Thin, blue lines
indicate inheritance. Thick, transparent bands connect 2nd-level
nodes to their owning 1st-level nodes. Finally, thin, green lines
indicate outgoing method calls. To avoid information overload,
method calls are only shown when the user hover over a calling node
by default. 1st-level nodes belong to the same group to be clustered
together. By default, clock sectors of 1st-level nodes (which are
drawn by default) are colorized in shades of blue and 2nd-level
nodes (which are hidden by default) in shades of green, darker
shades representing older revisions and lighter shades representing
newer ones. The user can choose to view only a specific period in the
whole history of the project.

Table 5. Case 5 analysis

Task
Comprehend the structure of a program
Monitor code changes

Data

Classes, objects, interfaces
Functions
Relationships between code components
Metadata (such as the author of a revision)
Events and sequences (sequences of revisions)

Data (derived)
Code metrics such as WMC, DIT, NOC, CBO,
RFC, LCOM

Data Processing Static analysis, AST

Representation

Technique

Encode: Pie chart, Hue, Size,
Angle, Saturation
Reduce: Filter, Aggregation
Facet: Partition into multiform
views, Juxtaposed views,
Linked highlighting, Linked
navigation, Overview–detail,
Pop-up view
Manipulate: Select

Textual
Content

N

Availability
Scalability N

Integration N

4.6 Case 6: Exploring the Evolution of Software Quality
with Animated Visualization

Fig. 8 case 6 main view

The main view of the visualization system developed in this
paper[18] is shown in figure 8. An approach to quickly investigate
programs composed of thousands of classes, over dozens of versions.
Programs and their associated quality characteristics for each version
are graphically represented and displayed independently. Their
solution proposes to use visualization as a semi-automatic approach
to analyze the quality of programs over many versions. Classes are
represented as 3D boxes arranged over a 2D plane. Interfaces are
differentiated from classes by using cylinders. A set of graphical
characteristics are mapped to metrics: a color scale from blue to red
or a set of discrete colors to represent nominal data, the box’s height,
and the box’s rotation around the up axis. This visualization system
uses following associations for metrics and graphical characteristics:
color and coupling, twist and cohesion, size and height. The camera
rotates on an hemisphere, can smoothly move the center of the
hemisphere, as well as zoom in and out. The camera is always
pointing toward the layout plane to prevent confusion. Users can also
directly access the metrics numerical values or the code itself by
clicking on a given class. Another mode allows users to click on a
class to fetch information about its relationships. Instead of drawing
links between entities, the saturation of classes not concerned by
relationships is reduced. To transform from on version to another,
the view animates smoothly.

Table 6. Case 6 analysis

Task
Comprehend the structure of a program
Monitor code changes

Data

Source code
Classes, objects, interfaces
Relationships between code components
Metadata (version information)

Data (derived) Code metrics such as CBO, WMC, LCOM

Data Processing Static analysis, AST

Representation

Technique

Encode: Shape, Hue,
Saturation, Angle,
Position, Size, Treemap,
Animation
Reduce: Filter
Facet: Overview–detail,
Pop-up view
Manipulate: Select,
Zoom and pan

Textual
Content

Y

Availability
Scalability Y

Integration N

4.7 Case 7: FAVe: Visualizing User Feedback for
Software Evolution

Fig. 9. Case 7 main view

The main view of the visualization system developed in this
paper[19] is shown in figure 9. The visualization system developed
in this paper is an interactive user feedback visualization which
displays app reviews from four different points of view: general,
review based, feature based and topic-feature based. To generate the
data displayed by FAVe Natural Language Processing techniques
have been used. The home screen of FAVe is a simple interactive
dashboard. It provides a dynamic visualization of the user reviews in
terms of star ratings, user sentiment associated with each review and
a cumulative rating performance over the entire year. The interactive
pie chart(1) shows the overall distribution of the app’s ratings, in
terms of the number of stars given in the user reviews. When
clicking on the different ratings shown in the pie chart, the rest of the
graphs in the home screen are updated to reflect the information
about the selected pie chart rating. The sentiment bar graph(2)
depicts the overall user sentiments of all reviews. The line graph(3)
shows the month-wise distribution of all reviews. Fine-grained
visualizations overview(4) provides an overview of the three
different types of finer-grained user feedback views: review based,
feature based and feature topic based. Hovering the mouse over each
image, enlarges it, allowing the user to get a more detailed view. The
navigation menu(5) provides some selection/filtering options.

Table 7. Case 7 analysis
Task Analyze user feedback

Data User feedback

Data (derived)
Sentiment score, app features, feature-based
topics in app

Data Processing NLP

Representation

Technique

Encode: Pie chart, Scatter
plot, Hue, Brightness, Bar
chart
Reduce: Filter, Aggregation
Facet: Partition into multiform
views, Juxtaposed views,
Linked highlighting, Linked
navigation, Overview–detail
Manipulate: Select, Search

Textual
Content

Y

Availability
Scalability Y

Integration N

4.8 Case 8: GETAVIZ: Generating Structural,
Behavioral, and Evolutionary Views of Software
Systems for Empirical Evaluation

Fig. 11. Case 8 RD metaphor

 Fig. 10. Case 8 main view

The main view of the visualization system developed in this
paper[20] is shown in figure 10. The Recursive Disk(RD) metaphor
displays all important structural aspects of software system including
packages, classes, methods, and attributes. The glyphs used by the
metaphor shown in figure 11 are nested disks, rings, and segments.
The nesting represents the containment relations of the visualized
software entities. It shows all elements occurring in the depicted
evolution period of the software system. The size of the glyphs in the
base layout is determined by the maximal size of the represented
entities. The versions of the visualized software system are
positioned above the base layout. Only the entities occurring in the
respective version of the software system are shown in the
visualization. The size of the glyphs of the versions is determined by
the size of the element in the depicted version. By clicking on every
component, a pop-up view will be opened that presents metadata and
source code corresponding to that component. By double-clicking on
a plane associated with a version, a pop-up view will appear that
gives information about that version.

Table 8. Case 8 analysis

Task Monitor code changes

Data

Packages
Classes, objects, interfaces
Functions
Relationships between code components
Metadata (version information)

Representation
Technique

Encode: Pie chart, Size,
Containment, Position
Facet: Superimposed
views, Juxtaposed
views, Overview-detail,
Pop-up view
Manipulate: Select,
Zoom

Textual
Content

Y

Availability
Scalability N

Integration N

4.9 Case 9: Multiscale and Multivariate Visualizations
of Software Evolution

 Fig. 12. Case 9 main view

The main view of the visualization system developed in this
paper[21] is shown in figure 12. This paper addresses two aspects of
the problem of coping with the large software size to be visualized:
many data elements (e.g. files and file versions in a repository) and
many attributes per element (e.g. file size, type, and author, and
commit time and comments). They address the first problem by
using a multiscale (or hierarchical) software decomposition and a
new visual widget for displaying this hierarchy and letting users
choose from its relevant levels of detail. They address the second
problem by a new visual approach that enables complex visual
correlations over multivariate data Each file is depicted along a time
horizontal axis as a sequence of segments. Each segment shows one
file version. The version creation time and the duration decide the
position of the segment in the sequence and its length. The segment
color shows version attributes, e.g. author ID, or functions defined
on attributes, e.g. code size. To build complete visualizations of
software evolution, individual file representations on the vertical axis
are stacked so they share the same time scale, and use the same color
encoding. Users can select attribute(s) they would like them encoded
and create a visualization of their own. For example, figure 12 shows
an example of visualizing several attributes. Here, bubble patterns
are used to indicate revisions belonging to a given system release,
and a diagonal hatch pattern for files containing the word ‘tag’ in
their commit logs. Color shows author ID. Files can be easily
recognized if they belong to the selected release and contain the
word ‘tag’. By clicking on each segment, a pop-up window shows
source code and detailed information about that segment.

Table 9. Case 9 analysis

Task
Monitor code changes
Comprehend the structure of a program

Data
Source code
Events and sequences (sequence of revisions)
Metadata (version information)

Data (derived) Files containing word “tag”

Data Processing Static analysis

Representation
Technique

Encode: Stacked bar chart,
Color, Position, Size, Texture
Facet: Juxtaposed views,
Pop-up view
Manipulate: Select

Textual
Content

Y

Availability
Scalability Y

Integration N

4.10 Case 10: Performance Evolution Blueprint:
Understanding the Impact of Software Evolution on
Performance

Fig. 13. Case 10 main view

The main view of the visualization system developed in this
paper[22] is shown in figure 13. They propose performance
evolution blueprint, a visual support to precisely compare multiple
software executions. Suppose that after a chain of modifications the
performance of the system has been reduced. Unfortunately,
identifying which of the changes contained in these versions are
responsible for this performance drop is difficult. To address this
issue, this paper proposes a new approach to visualize the
performance difference. A blueprint is obtained after running two
executions. Each box is a method context. Edges are invocations
between methods (a calling method is above the called methods).
Height of a method is the difference of execution time between the
two executions. If the difference is positive (i.e., the method is
slower), then the method is shaded in red, otherwise it is green. The
width of a method is the absolute difference in the number of
executions, thus always positive. Light red / pink color means the
method is slower, but its source code has not changed between the
two executions. If red the method is slower and the source code has
changed. Light green indicates a faster non-modified method. Green
indicates a faster modified method. Yellow indicates new methods
and gray indicates removed methods. Tooltip gives an extended list
of data for the particular methods, including its name, its defining
class and the numerical values of the differences.

Table 10. Case 10 analysis

Task

Monitor code changes
Comprehend the structure of a program
Analyze execution of the program
Perform debugging

Data
Functions
Events and sequences (sequence of calls)
Relationships between code components

Data (derived) delta time, delta # of executions

Data Processing Dynamic analysis

Representation
Technique

Encode: Link, Size,
Color
Facet: Partition into
multiform views,
Juxtaposed views,
Linked highlighting,
Linked navigation
Manipulate: Select

Textual
Content

Y

Availability
Scalability N

Integration N

4.11 Case 11: Visualization of Program-Execution Data
for Deployed Software

Fig. 14. Case 11 main view

The main view of the visualization system developed in this
paper[23] is shown in figure 14. In this paper, a new technique has
been introduced for collecting, storing, and visualizing program-
execution data gathered from deployed instances of a software
product. The approach is defined for a context in which a number of
instances of a program are continuously monitored. Statement level
is the lowest level of representation. At this level, the actual source
code is represented, and each line of code is suitably colored. The
representation level provides a miniaturized view of the source code.
It maps each line in the source code to a short, horizontal line of
pixels. This zoomed away perspective lets more of the software
system be presented on one screen. The system level is the most
abstracted level in this visualization. For the representation at this
level treemap view. The root node represents the entire system. The
intermediate non-leaf nodes represent modularizations of the system
(e.g. Java packages). The leaf nodes represent source files in the
system. To represent executions, they use an execution bar: a
virtually infinite rectangular bar, of which only a subset is visible at
any time. Each band in the execution bar represents a different
execution of the monitored program in the field. The Code Viewer
displays both the file-level view and the statement-level view. Right-
clicking on a statement in the file-level view causes a context menu
to appear that permits the viewing of different types of information
about the statement, such as the number of executions that covered it
or the types of exceptions that were thrown by the executions that
covered it. The statement-level view shows a small number of
statements in its full-sized text, at the bottom of the Code Viewer
window. Moving the mouse cursor over the file-level view causes
the statement-level view to display those statements under the cursor.
The idea is to assign a color to each statement in the program to
represent how likely it is for the statement to be responsible for the
behavior that led to the throwing of an exception. Red, yellow, and
green are used in this case to represent very likely, possibly, and
unlikely, respectively. Selecting an execution or a set of executions
causes the other displays to update their views to show only the
information pertaining to the selected executions. Executions can be
selected by left-clicking with the mouse on the corresponding
band(s).

Table 11. Case 11 analysis

Task
Analyze execution of the program
Perform debugging

Data

Source code
Packages
Classes, objects, interfaces
Test suite and results
Events and sequences (run-time events)
Relationships between code components
Metadata (statement information)

Data (derived) Level of suspiciousness

Data Processing Dynamic analysis, Static analysis

Representation

Technique

Encode: Dense layout,
Treemap, Position, Size,
Color, Bar chart, Stacked bar
chart, Containment
Reduce: Filter, Aggregation
Facet: Partition into multiform
views, Juxtaposed views,
Linked highlighting, Linked
navigation, Overview-detail
Manipulate: Select

Textual
Content

Y

Availability
Scalability Y

Integration N

4.12 Case 12: Software Evolution Storylines

Fig. 15. Case 12 main view

The main view of the visualization system developed in this
paper[24] is shown in figure 15. This paper presents a technique for
visualizing the interactions between developers in software project
evolution. The goal is to produce a visualization that shows more
detail than animated software histories, but keeps the same focus on
aesthetics and presentation. Instead of thin lines, they use metro
maps (i.e. schematic diagrams of public transportation routes) to
thicken the lines and use bold colors. The amount of space between
connected lines was decreased, to mimic the metro map convention
showing collinear routes. A fairly common occurrence in open
source development is when a developer does not commit during a
timestep, but resumes work in a future one. These furloughs from
activity ought to be visually differentiated from a developer who
leaves the project permanently. They use dashed lines to connect
develoeprs’ timesteps during their temporary absence. As the
storylines indicate the number of developers but not the amount of
commits, a commit histogram is placed at the bottom. This shows the
number of file-commits (the sum of files in each commit). Each bar
is one timestep and is divided into color categories, defined by the

user. In the histograms in this paper, the colors are red for core
source code, yellow for modules, and blue for documents. a
storyline, only that developer’s storyline is colored and the rest are
turned to grayscale (pictured below). In addition, the selected
developer’s activity in the commit histogram is highlighted through
this interaction.

Table 12. Case 12 analysis

Task
Monitor code changes
Monitor developer activities

Data
Events and sequences (sequence of commits)
Metadata (version information)

Representation

Technique

Encode: Line chart, Dot
marks, Size, Color, Stacked
bar chart, Texture
Reduce: Filter
Facet: Partition into multiform
views, Juxtaposed views,
Linked highlighting
Manipulate: Select, Zoom

Textual
Content

N

Availability
Scalability N

Integration N

4.13 Case 13: Software Visualization in the Large

Fig. 16. Case 13 main view

The main view of the visualization system developed in this
paper[25] is shown in figure 16. Software is invisible, disappearing
into files on disks. The invisible nature of software contributes to
low programmer productivity by hiding system complexity,
particularly for large team-oriented projects. Visualization can help
software engineers cope with this complexity and thereby increase
programmer productivity. The summary representation presents file-
level statistics. Each file is represented by a rectangle. There are four
possible rectangle heights, corresponding to the four quartiles of file
size (as measured by number of lines). Because file sizes may vary
from a few lines to tens of thousands of lines, grouping the sizes by
quartiles ensures that all of the files are always visible. This
visualization shows the summary representations of the same files in
two different panes, corresponding to two different statistics. In this
case, only three of the four size quartiles are represented in the data
set. The left pane shows the code age as miniature time series within
each rectangle, while the right pane shows the amount of code added
for bug fixing and new functionality. Other possibilities for color
encoding include software metrics such as Halstead's program
volume measure or McCabe's cyclomatic complexity. By hovering
over different parts of a file a pop-up view shows detailed
information.

Table 13: Case 13 analysis

Task
Comprehend the structure of a program
Monitor code changes

Data
Source code
Relationships between code components
Metadata (statement information)

Data (derived)
Halstead's program volume measure,
McCabe's cyclomatic complexity

Data Processing AST, Static analysis

Representation
Technique

Encode: Histogram, Color,
Bar chart, Size
Facet: Partition into
multiform views,
Juxtaposed views,
Overview-detail, Pop-up
view

Textual
Content

Y

Availability
Scalability Y

Integration N

4.14 Case 14: Supporting the understanding of the
evolution of software items

Fig. 17. Case 14 main view

The main view of the visualization system developed in this
paper[26] is shown in figure 17. It is important to highlight that the
representation of software items evolution helps to visualize the
contributions of team members through several revisions. The green
line connecting yellow ovals represent the main code versioning and
the light brown lines represent branches. It also provides the
possibility to select a branch and highlight its path. The visualization
main components are the revision tree, the timeline and the control
panel. A grid based structure is used for the revision tree and its
correlation with the timeline for providing an intuitive mechanism to
visualize relationships between developers, baselines and revisions;
the rows represent authors and the columns represent timeline
elements. On the other hand, the control panel displays item and
revision details and allows filtering by date ranges and zooming into
visualization areas. The item details provided by the control panel
are the item name the creation date, the update date, the number of
programmers, the number of baselines or dates of the evolution.
When one revision is under focus, the control panel displays the log
and the path of that revision. The timeline uses variable width
columns to accommodate baselines, dates and creation time of
revisions; the column width depends on the number of revisions
associated to the baseline.

Table 14. Case 14 analysis

Task
Monitor developer activities
Monitor code changes

Data
Events and sequences (sequence of revisions)
Metadata (revision information)

Representation

Technique

Encode: Grid, Color, Line
chart, Size
Reduce: Filter
Facet: Partition into multiform
views, Juxtaposed views,
Linked highlighting, Overview-
detail, Superimposed line
charts
Manipulate: Select, Zoom

Textual
Content

Y

Availability
Scalability N

Integration N

4.15 Case 15: Towards Anomaly Comprehension

Fig. 18. Case 15 main view

The main view of the visualization system developed in this paper[27]
is shown in figure 18. In this paper, a localized approach to navigate
and analyze the CPU usage of little-known programs and libraries has
been introduced. This method exploits the structural information
present in profiling call trees to selectively raise or lower the local
abstraction level of the performance data The traditional approach for
navigating a profiling tree consists selectively hiding or showing
subtrees. The represented information remains however at the same
level of abstraction: each node corresponds to the invocation a
method along a particular call path starting at the tree’s root. This
paper proposes to explore an alternative approach by varying the level
of abstractions at which different parts of the profiling tree are
represented. Developers might however wish to zoom-in by lowering
the abstraction of one particular part of the graph, while maintaining
the rest of the graph in its compacted form. The technique presented
in this paper further extends this approach by allowing users to select
local levels of abstraction that only apply in one part of the profiling
tree. As a result, the same program element might be expanded at
different granularity levels in different parts of the graph. Figure 18
shows how the right-hand side lib3 package is locally expanded, while
the same left-hand side package remains compacted.

Table 15. Case 15 analysis

Task
Analyze execution of the program
Comprehend the structure of a program

Data

Source code
Packages
Classes, objects, interfaces
Functions
Relationships between code components
Metadata (statement information)

Data (derived)
Halstead's program volume measure,
McCabe's cyclomatic complexity

Data Processing AST, Static analysis

Representation

Technique

Encode: Shape, Size,
Color, Link, Size
Reduce: Aggregation
Facet: Overview-detail
Manipulate: Select, Zoom

Textual
Content

N

Availability
Scalability Y

Integration N

4.16 Case 16: Visually Exploring Software Maintenance
Activities

 Fig. 19. Case 16 main view

The main view of the visualization system developed in this
paper[28] is shown in figure 19. Each maintenance activity is
encoded using a different color, and the three activity types are
stacked on top of one another. The x-axis is the time-line, and the y-
axis is the activity (commit) count. Stacked bar diagrams facilitate
comparisons between maintenance activities within a given stacked
bars column (e.g., what maintenance activity dominated a given time
frame), as well as between different stacked bars columns (e.g.,
which of the time frames had more of a given maintenance activity).
In addition, bar diagrams often allow for an easy detection of
anomalies such as peaks and deeps, as well as trends. Users can
zoom on a specific time period by clicking the left mouse button and
dragging the mouse. Maintenance activities can be filtered by a
number of parameters: project’s name and time period. In the
developer centric view, maintenance activities can also be filtered by
a developer identifier, which can be a name, an email address, or
both. By hovering over an area of a given stacked bars column, the
corresponding maintenance activity’s aggregate information is
displayed. This additional numerical information helps in situations
where the segmentation within a single stacked bars column is
seemingly equal, and visually comparing the areas is not accurate
enough. Users can obtain a detailed view of the commits pertaining
to a specific maintenance activity and time frame by clicking its
color in the corresponding stacked bars column.

Table 16. Case 16 analysis

Task
Monitor code changes
Monitor developer activities
Detect code smells

Data
Events and sequences (sequence of commits)
Metadata (commit information)

Data (derived) Different types of maintenance

Data Processing Static analysis

Representation
Technique

Encode: Stacked bar chart,
Color
Reduce: Aggregation, Filter
Facet: Overview-detail, Pop-
up view
Manipulate: Select, Zoom

Textual
Content

N

Availability
Scalability Y

Integration N

4.17 Case 17: Using HTML5 Visualizations in Software
Fault Localization

Fig. 20. Case 17 main view

The main view of the visualization system developed in this
paper[29] is shown in figure 20. In this paper, GZOLTAR toolset is
introduced to display the diagnostic reports yielded by spectrum-
based fault localization. The GZOLTAR toolset is a plug and play
plugin for the Eclipse IDE to ease world-wide adoption. This
visualization helps to drastically reduce the time needed in
debugging. The generated visualization is interactive, and the user is
able to navigate through the project structure to analyze it in detail.
The intention of the visualizations have the main goal of representing
the analyzed project in an hierarchical way to allow a faster and
easier debugging process. In the Sunburst visualization, each ring
denotes an hierarchical level of the source code organization (from
the inner to the outer circle). All visualizations obey to a color
gradient ranging from green (low suspiciousness) to red (very high
suspiciousness). The suspiciousness is computed by a diagnostic
algorithm. The Sunburst visualization uses arcs as solid areas which
represent the nodes. The radius of each one proportionally varies
with the size of the respective subtree. The root element is drawn
always at the center of the visualization, and the children are
expanded outward from it. This visualization uses polar coordinates
to properly position each arc. The GZOLTAR toolset also places
warnings on the vertical ruler of the code editor next to the lines that
are most likely to contain the fault. This list of warnings aid the
developer in the process of pinpointing the faulty statement. The
warnings can be of four types: (1) red for the top lines most likely to
contain a fault, (2) orange for high suspiciousness, (3) yellow for

medium suspiciousness, and (4) green for low suspiciousness. Each
warning embeds a ColorADD symbol3, aimed at aiding color-blind
people distinguish between the and which use JUnit test cases.

Table 17. Case 17 analysis

Task
Analyze execution of the program
Detect code smells
Perform debugging

Data
Source code
Test suite and results

Data (derived) Level of suspiciousness

Data Processing AST, Dynamic analysis

Representation

Technique

Encode: Sunburst diagram,
Color, Glyph
Reduce: Aggregation, Filter
Facet: Linked highlighting,
Juxtaposed views
Manipulate: Select, Zoom

Textual
Content

N

Availability
Scalability Y

Integration Y

4.18 Case 18: Declarative and visual debugging in
Eclipse

 Fig. 21. Case 18 main view

The main view of the visualization system developed in this
paper[30] is shown in figure 21. JIVE, the visualization system
introduced in this paper, is a declarative and visual debugging
environment for Eclipse. Traditional debugging is procedural in that
a programmer must proceed step-by-step and object- by-object in
order to uncover the cause of an error. They present a declarative
approach to debugging consisting of a flexible set of queries over a
program's execution history as well as over individual runtime states.
This runtime information is depicted in a visual manner during
program execution in order to aid the debugging process. The current
state of execution is depicted through an enhanced object diagram,
and the history of execution is depicted by a sequence diagram. This
methodology makes use of these diagrams as a means of formulating
queries and reporting results in a visual manner. The object model
represents the program's execution state, while the sequence model
details its history of execution. An object diagram depicts the
program's execution state by showing objects and their structural
links as well as outstanding method activations. The JIVE sequence
diagram is constructed interactively at execution time. In JIVE, every
point on the sequence diagram is correlated with the object diagram
that would have been in effect at that execution point. JIVE also
supports interactive forward as well as reverse stepping of the
program. Through the sequence diagram, a user may direct the JIVE

engine to any previous point in the execution history in order to
inspect the object diagram at that execution point.

Table 18. Case 18 analysis

Task
Analyze execution of the program
Detect code smells
Perform debugging

Data

Source code
Test suite and results
Packages
Classes, objects, interfaces
Functions
Relationships between code components
Events and sequences (runtime events)
Metadata (running information)

Data (derived) Run-time information

Data Processing Dynamic analysis

Representation
Technique

Encode: UML, Link, Color,
Sequence diagram, Size,
Reduce: Aggregation, Filter
Facet: Linked highlighting,
Juxtaposed views
Manipulate: Select, Zoom

Textual
Content

N

Availability
Scalability N

Integration Y

4.19 Case 19: Visualization of Test Information to Assist
Fault Localization

Fig. 22. Case 19 main view

The main view of the visualization system developed in this
paper[31] is shown in figure 22. The Tarantula system, developed in
this paper, is a software engineering tool for visualizing test
coverage. Dense displays using line marks have become popular for
showing overviews of software source code. In these displays the
coloring of the lines encodes an attribute of interest. Most of the
screen is devoted to a large and dense overview of source code using
one-pixel tall lines, color coded to show whether it passed, failed, or
had mixed results when executing a suite of test cases. The small
source code view in the lower left corner is a detail view showing a
few lines of source code at a legible size. The dense display scales to
around ten thousand lines of code, handling around one thousand
vertical pixels and ten columns. Tarantula computes two derived
quantitative attributes that are encoded with hue and brightness. The
brightness encodes the percentage of coverage by the test cases,

where dark lines represent low coverage and bright ones are high
coverage. The hue encodes the relative percentage of passed versus
failed tests.

Table 19. Case 19 analysis

Task
Comprehend the structure of a program
Detect code smells
Perform debugging

Data
Source code
Test suite and results

Data (derived) Test execution information

Data Processing Dynamic analysis

Representation
Technique

Encode: Dense layout, Hue,
Brightness, Position, Size
Reduce: Filter
Facet: Partition into
multiform views, Juxtaposed
views, Linked highlighting,
Overview-detail
Manipulate: Select

Textual
Content

Y

Availability
Scalability Y

Integration N

4.20 Case 20: Visualizing Interactive and Shared
Debugging Sessions

Fig. 23. Case 20 main view

The main view of the visualization system developed in this
paper[32] is shown in figure 23. Debugging sessions require a
methodical process of finding causes and reducing the number of
software problems. During such sessions, developers run a software
project, traversing method invocations, setting breakpoints, stopping
or restarting executions. In these sessions, developers explore
different parts of the code and create knowledge about them. When
debugging sessions are over, it is likely that such knowledge is lost,
and developers cannot use it in other sessions or sharing it with
collaborators. Swarm Debugging, the visualization developed in this
paper, is a new approach for visualizing and sharing information
obtained during debugging sessions, providing interactive and real-
time visualization techniques, and several searching tools. The
Sequence stack diagram is a novel diagram to represent a sequence
of methods invocations. They use circles to represent methods and
arrows to represent invocations. Each line is a complete stack trace,
without returns. The first node is a Starting point (non-invoked
method), and the last node is an Ending point (non-invoking
method). If the invocation chain continues to a non-starting point
method, a new line is created, the current stack is repeated, and a
dotted arrow is used to represent a return for this node. Code
exploration features are provided so that developers can directly go
to a method in the Eclipse Editor by double-clicking on its node in
the diagram. The Dynamic method call graph is a diagram based on

directed call graphs. This visualization uses circles to represent
methods (nodes) and oriented arrows to express invocations (edges).
Each session generates a call graph and all invocations collected
during the session are shown in this visualization. The starting points
(non-invoked methods) are represented at the top of a tree, and the
adjacent nodes represent the invocation sequence. As an interactive
feature, the developer can navigate along the sequence of invocation
methods by pressing the F9 key (forward) or the F10 key
(backwards). Finally, developers can go directly to a method in the
Eclipse Editor by double clicking on its node in the diagram. The
Swarm dashboard is an online panel to display project information.

Table 20. Case 20 analysis

Task
Comprehend the structure of a program
Detect code smells
Perform debugging

Data

Source code
Functions
Events and sequences
Relationships between code components
Metadata

Data (derived) Debugging session information

Data Processing Dynamic analysis, AST

Representation

Technique

Encode: Color, Link, Position,
Reduce: Filter
Facet: Partition into multiform
views, Juxtaposed views,
Linked highlighting, Overview-
detail
Manipulate: Select

Textual
Content

Y

Availability
Scalability Y

Integration Y

4.21 Case 21: Unifying Artifacts and Activities in a
Visual Tool for Distributed Software Development
Teams

Fig. 24. Case 21 main view

The main view of the visualization system developed in this
paper[33] is shown in figure 24. Augur is a visualization tool
developed in this paper that supports distributed software
development processes. Augur creates visual representations of both
software artifacts and software development activities, and, crucially,
allows developers to explore the relationship between them. Augur is
designed not for managers, but for the developers participating in the
software development process. Augur provides a set of linked

visualizations displaying different characteristics of the software
system under examination. Each pane displays a different aspect of
the system being examined and changes in one view are immediately
reflected in the others. The large central pane shows the line oriented
view of the source code. In this view, the color of each pixel line
indicates how recently it was modified; this allows a developer, at a
glance, to see how much activity has taken place recently and where
that activity has been located.

Table 21. Case 21 analysis

Task
Comprehend the structure of a program
Monitor code changes
Monitor developer activities

Data
Source code
Events and sequences
Metadata

Data (derived) Line position, Line status

Data Processing Static analysis, AST

Representation

Technique

Encode: Dense layout,
Position, Size, Color, Bar
chart, Stacked bar chart,
Line chart
Reduce: Filter, Aggregation
Facet: Partition into
multiform views,
Juxtaposed views, Linked
highlighting, Linked
navigation, Overview-detail
Manipulate: Select, Zoom

Textual
Content

Y

Availability
Scalability Y

Integration N

4.22 Case 22: Visualizing Software Systems as Cities

Fig. 25. Case 22 main view

The main view of the visualization system developed in this
paper[34] is shown in figure 25. This paper presents a 3D
visualization approach which gravitates around the city metaphor,
i.e., an object-oriented software system is represented as a city that
can be traversed and interacted with: the goal is to give the viewer a
sense of locality to ease program comprehension. The key point in
conceiving a realistic software city is to map the information about
the source code in meaningful ways in order to take the approach
beyond beautiful pictures. The brown buildings represent classes and
interfaces, placed in blue tiles representing the packages. The color
saturation of the tiles is proportional to the nesting level of the
corresponding packages. The height of the buildings represents their
number of methods (NOM), while the width and length represents
the number of attributes (NOA). On the left of the figure, at the far
end of the city, we see two external suburbs, which represent
libraries. The visualization allows us to easily spot some patterns.

This city hosts a number of disproportional buildings, such as two
antenna-shaped constructs, which represent classes with a large
number of methods and very few attributes, as well as a number of
buildings that look like parking lots, which represent classes with
lots of attributes and very few or no methods (potential data classes).
There are also a lot of small houses, which make up entire districts.
The visualization is interactive and navigable using the keyboard,
i.e., it is easy to zoom in on details of the city or to focus on one
specific district Right-clicking any of the items brings up a context
menu to perform a variety of tasks, such as inspecting the model
entity, accessing the represented source code, etc. The initial level of
granularity is set to the class level, the visualization scales up well in
terms of the size of the system that it can display as a code city.
However, in cities representing very large systems the interactivity
and navigability can be substantially slowed down.

Table 22. Case 22 analysis

Task
Comprehend the structure of a program
Detect code smells

Data

Source code
Packages
Classes, objects, interfaces
Functions
Relationships between code components
Metadata

Data (derived) NOM, NOA

Data Processing Static analysis

Representation

Technique

Encode: Shape, Position,
Size, Hue, Saturation, 3D Bar
chart
Reduce: Filter, Aggregation
Facet: Overview-detail
Manipulate: Select, Zoom

Textual
Content

Y

Availability
Scalability N

Integration N

4.23 Case 23: Blended, Not Stirred: Multi-concern
Visualization of Large Software Systems

Fig. 26. Case 23 main view

The main view of the visualization system developed in this
paper[35] is shown in figure 26. While constructing and evolving
software systems, developers generate directly and indirectly a large

amount of data of diverse nature, such as source code changes, bug
tracking information, stack traces, etc. Often these diverse data
sources are processed and visualized in isolation, leading to a partial
view of systems. This paper presents a blended approach to visualize
several data ingredients at once to enable a quick and comprehensive
assessment of what happened to a software system in any given time
frame. The Blended City is the tool developed in this paper. It is
composed of four main parts: A status bar to display additional
information on the selected entity, a toolbar to customize the
visualization, the view canvas, and a timeline slider. With the
timeline slider the user chooses the visualized data timespan. The
width of this slider can be adapted using the dropdown menu on the
right part of the toolbar. Moreover, the user can click on an entity
and get additional information on the status bar. Selected entities are
colored with a bright green.

Table 23. Case 23 analysis

Task

Comprehend the structure of a program
Detect code smells
Perform debugging
Monitor code changes

Data

Source code
Packages
Classes, objects, interfaces
Functions
Relationships between code components
Metadata

Data (derived) NOM, NOA

Data Processing Static analysis

Representation
Technique

Encode: Shape, Position,
Size, Hue, Brightness, 3D
Bar chart
Reduce: Filter,
Aggregation
Facet: Overview-detail
Manipulate: Select, Zoom

Textual
Content

N

Availability
Scalability N

Integration N

5 D ISCUSSION OF RESULTS

The comprehensive result of the analysis phase is in table 24. First
row is the number of papers. The number is in the ordered they were
analyzed and appeared in this paper. Each row show shows one of
the subcategories in our 5 main categories. To be able to put the
whole table in one page, the names of subcategories are shortened.
To ease the comprehension, each category has a different color.
Because the variety of techniques was high, the table only show
higher-level techniques such as manipulation. If one paper in a
column is associated to one of the subcategories in a row, then the
cell placed in the intersection of that column and row, is red.
Table 1 includes a lot of information. We can see that program
comprehension and monitoring code changes are the most
investigated tasks, while tracking bug reports and analyzing feedback
are less investigated. Because of that, bug report and user feedback
are data types with the least usage. Metadata is the kind of data that
is present in most of the cases. Also, the table illustrates that the
combination of <source code, package, class, functions> is common
and most of the time they are visualized together because in a
hierarchical view of a project they are related.

 NLP methods are used only in one case. Another three methods
are applied almost equally. Among combinations <AST, Static
analysis> happens more than the other possibilities.
 Obviously, all the cases have “Encode” and most of the times all
four high-level methods happen together. In a few cases “Reduce” or
“Manipulate” are absent. More than half of the cases display textual
content and it shows that this is a common approach in visualizing
software evolution and maintenance.
 More than half of the cases are scalable which is a necessary
feature for a visualization system in the field of software
engineering, because this field always deals with data in large size. A
few cases have been integrated into an IDE and available through
plugins.
 In addition, some relations between categories can be viewed from
the table. Task, data and data processing are conceptually related to
each other. For example, we can see when the task is program
execution, most of the time data is source code, events and sequences
and relationships. Also, data processing method is dynamic analysis
which is suitable for this type of task and data.

6 CONCLUSION

The present work gathered 23 different studies that had focused
on visualization of software evolution and maintenance. This pool
included a mixture of design study papers. Each paper was
described, and categorized based on its respective visualization
method. A categorization including task, data, data processing,
representation and availability classes is provided as well. Final
result is shown in an exhaustive table which makes it easier to
compare various systems and gain an overall opinion about the role
of visualization systems in the field of software evolution and
maintenance. A lot of research has been done on visualizing
program’s structure and code changes is saturated while user
feedback and tracking bug reports areas are neglected. Using NLP
methods is quite new in this field and it’s expected to become
involved more in future. The main challenge is still the large amount

of complex data that researchers are indeed trying to deal with

that through various processing methods or visualization techniques.

REFERENCES

[1] Roman, Gruia-Catalin and Cox, Kenneth C. Program Visualization: The

Art of Mapping Programs to Pictures, In: International Conference on

Software Engineering 14th International Conference on Software

Engineering: Proceedings. New York: Association for Computing

Machinery, 1992.

[2] Hendrix, T. & II, James & Maghsoodloo, Saeed & McKinney,

Matthew. Do visualizations improve program comprehensibility?

Experiments with control structure diagrams for Java. ACM Sigcse

Bulletin. 32. 382-386, 2000.

[3] M.H. Brown, Algorithm Animation, MIT Press Cambridge, 1988.

[4] Green, Thomas R. G. and Marian Petre. “When Visual Programs are

Harder to Read than Textual Programs.” (1992).

[5] Fjeldstad, R. K. and W. T. Hamlen. “Application program maintenance

study - reports to our respondents.” (1982).

[6] PRICE, A., BAECKER, R., AND SMALL, I. 1993. A principled

taxonomy of software visualization. Journal of Visual Languages and

Computing 4(3):211-266.

[7] MALETIC, J., MARCUS, A., AND COLLARD, M. 2002. A task

oriented view of software visualization. Proceedings of IEEE Workshop

of Visualizing Software for Understanding and Analysis Paris, France,,

32–40.

[8] KOSCHKE, R. 2003. Software visualization in software maintenance,

reverse engineering, and re-engineering: a research survey. Journal of

Software Maintainance. Evol.: Res. Pract 15, 87–109.

[9] STOREY, M.-A. D., AND GERMAN, D. M. 2005. On the use of

visualization to support awareness of human activities in software

development: a survey and a framework. In SoftVis ’05: Proceedings of

the 2005 ACM symposium on Software visualization, ACM, New

York, NY, USA, 193–202.

[10] BAECKER, R., DIGIANO, C., AND MARCUS, A. 1997. Software

visualization for debugging. Commun. ACM 40, 4, 44–54.

[11] SENSALIRE, M., AND OGAO, P. 2007. Tool users requirements

classification:how software visualization tools measure up.

AFRIGRAPH ’07’ Proceedings of the 5th International Conference on

Computer graphics, virtual reality, visualization and interaction in

Africa, Grahamstown, South Africa.

[12] Munzner, T., (2014). Visualization Analysis and Design, A K Peters

Visualization Series. CRC Press.

[13] Sasso, Tommaso Dal and Michele Lanza. “A closer look at bugs.” 2013

First IEEE Working Conference on Software Visualization (VISSOFT)

(2013): 1-4.

[14] Hanjalic, Avdo. (2013). ClonEvol: Visualizing software evolution with

code clones. 2013 1st IEEE Working Conference on Software

Visualization - Proceedings of VISSOFT 2013.

[15] Voinea, Lucian & Telea, Alexandru & Wijk, Jarke. (2005). CVSscan:

Visualization of Code Evolution. 47-56.

[16] Erdemir, Ural & Tekin, Umut & Buzluca, Feza. (2011). E-Quality: A

graph based object oriented software quality visualization tool.

Proceedings of the 6th IEEE International Workshop on Visualizing

Software for Understanding and Analysis (VISSOFT). 1 - 8.

[17] Alexandru, Carol & Behnamghader, Pooyan & Proksch, Sebastian &

Gall, Harald. (2019). Evo-Clocks: Software Evolution at a Glance.

10.1109/VISSOFT.

[18] Langelier, Guillaume & Sahraoui, Houari & Poulin, Pierre. (2008).

Exploring the Evolution of Software Quality with Animated

Visualization. Proceedings - 2008 IEEE Symposium on Visual

Languages and Human-Centric Computing.

[19] Guzman, E., Bhuvanagiri, P., & Brügge, B. (2014). FAVe: Visualizing

User Feedback for Software Evolution. 2014 Second IEEE Working

Conference on Software Visualization, 167-171.

[20] Baum, David & Schilbach, Jan & Kovacs, Pascal & Eisenecker, Ulrich

& Müller, Richard. (2017). GETAVIZ: Generating Structural,

Behavioral, and Evolutionary Views of Software Systems for Empirical

Evaluation. 10.1109/VISSOFT.2017.12.

[21] Voinea, Lucian and Alexandru Telea. “Multiscale and multivariate

visualizations of software evolution.” SoftVis '06 (2006).

[22] Sandoval Alcocer, Juan & Bergel, Alexandre & Ducasse, Stéphane &

Denker, Marcus. (2013). Performance Evolution Blueprint:

Understanding the Impact of Software Evolution on Performance. 2013

1st IEEE Working Conference on Software Visualization - Proceedings

of VISSOFT 2013. 1-9. 10.1109/VISSOFT.2013.

[23] Orso, Alessandro & Jones, James & Harrold, Mary. (2003).

Visualization of Program-Execution Data for Deployed Software. 67-

76, 211. 10.1145/774833.774843.

[24] Ogawa, Michael & Ma, Kwan-Liu. (2010). Software evolution

storylines. 35-42. 10.1145/1879211.1879219.

[25] Ball, Thomas & Eick, Stephen. (1999). Software Visualization in the

Large. Computer. 29. 10.1109/2.488299.

[26] Therón, Roberto & González-Torres, Antonio & García-Peñalvo,

Francisco. (2008). Supporting the understanding of the evolution of

software items. 189-192. 10.1145/1409720.1409750.

[27] Lin, Shen & Taiani, François & Ormerod, Thomas & Ball, Linden.

(2010). Towards anomaly comprehension: Using structural compression

to navigate profiling call-trees. Proceedings of the ACM Conference on

Computer and Communications Security. 103-112.

10.1145/1879211.1879228.

[28] Levin, Stanislav & Yehudai, Amiram. (2019). Visually Exploring

Software Maintenance Activities.

[29] Gouveia, Carlos & Abreu, Rui. (2013). Using HTML5 visualizations in

software fault localization. 2013 1st IEEE Working Conference on

Software Visualization - Proceedings of VISSOFT 2013. 1-10.

10.1109/VISSOFT.2013.6650539.

[30] Czyz, Jeffrey & Jayaraman, Bharat. (2007). Declarative and visual

debugging in Eclipse. Proceedings of the 2007 OOPSLA Workshop on

Eclipse Technology EXchange. 31-35. 10.1145/1328279.1328286.

[31] Jones, James & Harrold, Mary & Stasko, John. (2002). Visualization of

Test Information to Assist Fault Localization. 10.1145/581396.581397.

[32] Petrillo, Fabio & Lacerda, Guilherme & Pimenta, Marcelo & Freitas,

Carla. (2015). Visualizing interactive and shared debugging sessions.

140-144. 10.1109/VISSOFT.2015.7332425.

[33] Froehlich, Jon and Paul Dourish. “Unifying artifacts and activities in a

visual tool for distributed software development teams.” Proceedings.

26th International Conference on Software Engineering (2004): 387-

396.

[34] Wettel, Richard & Lanza, Michele. (2007). Visualizing Software

Systems as Cities. VISSOFT 2007 - Proceedings of the 4th IEEE

International Workshop on Visualizing Software for Understanding and

Analysis. 92-99. 10.1109/VISSOF.2007.4290706.

[35] Sasso, Tommaso & Minelli, Roberto & Mocci, Andrea & Lanza,

Michele. (2015). Blended, not stirred: Multi-concern visualization of

large software systems. 106-115. 10.1109/VISSOFT.2015.7332420.

