
Information Visualization in Software
Evolution and Maintenance

MARJANE NAMAVAR

UNIVERSITY OF BRITISH COLUMBIA

INFORMATION VISUALIZATION

FALL 2019

Background

Software Evolution: The process of developing software initially, then repeatedly
updating it for various reasons

Software Maintenance: The modification of a software product after delivery to
correct faults or improve performance

Visualization in Software Evolution and Maintenance: Mapping from
corresponding software artifacts including programs, to graphical representations

2

Goals

 Survey the existing literature focusing on the use of visualization for software

evolution and maintenance

 Analyze the data from empirical experiments under what/why/how framework

 Abstract gathered information to categorize existing approaches

3

Inclusion Criteria
• 23 papers were gathered

• Design study

• VISSOFT conference

• Under maintenance and evolution categories

• 2003-2019

• A visualization system which is central to that research and has a task

4

Categories

Task Data
Data

Processing
Representation Availability

5

Categories -> Task
• Help to detect code smells

• Help to analyze execution of the program

• Help to perform debugging

• Help to analyze user feedback

• Help to monitor code changes

• Help to monitor developer activities

6

Categories -> Data
• Source code

• Packages

• Classes and objects

• Test suite

• Bug report

• Events & sequences

• Relationships between code components

• User feedback

• Metadata (such as version information)

7

Categories -> Data Processing

• Abstract Syntax Tree

• NLP Methods

• Static Analysis

• Dynamic Analysis

8

Categories -> Representation

• Techniques

• Textual Content (of the artifact being visualized)

9

Categories -> Availability

• Scalability (supports millions of LOC)

• Integration (with IDE)

10

CVScan: Visualization of Code Evolution

A multi-view environment including:

• Line-oriented display of the changing code

• Each version is represented by a column

• Horizontal direction is used for time

• Source code

• A large variety of options

11

Fig. 14. L. Voinea, A. Telea, and J. J. van Wijk. CVSScan: Visualization of code evolution. In
Proceedings of the ACM Symposium on Software Visualization, pages 47–56. ACM Press, 2005.

CVScan: Analysis
Task

Help to monitor code changes and developer activities

- What code lines were added, removed, or altered and when?

- Which parts of the code are unstable?

- How are changes correlated?

- Who performed these modifications of the code?

Data

Source code (lines of code in different versions)

Events and Sequences (sequence of commits)

Metadata (<id,author,date,code> for each version)

Data Processing

Static analysis to compute:

- Line position

- Line status

Availability

Scalability: Y

Integration: Y

12

CVScan: Analysis (cont.)
Representation

Textual Content: Y

Techniques:

Encode: 2D plot, Color-map, Position

Reduce: Filter

Facet: Partition into multiform views, Juxtapose views, Linked highlighting, Linked navigation, Overview–detail

Manipulate: Select, Zoom and Pan

13

Discussion

• The most investigated task is monitoring code changes

• Animations become appealing to researchers

• NLP methods are applied recently

• The main challenge is the large amount of complex data

14

Questions?

