Information Visualization in Software
Fvolution and Maintenance

MARJANE NAMAVAR

UNIVERSITY OF BRITISH COLUMBIA
INFORMATION VISUALIZATION
FALL 2019

Background

Software Evolution: The process of developing software initially, then repeatedly
updating it for various reasons

Software Maintenance: The modification of a software product after delivery to
correct faults or improve performance

Visualization in Software Evolution and Maintenance: Mapping from
corresponding software artifacts including programs, to graphical representations

Goals

v" Survey the existing literature focusing on the use of visualization for software

evolution and maintenance
v" Analyze the data from empirical experiments under what/why/how framework

v" Abstract gathered information to categorize existing approaches

Inclusion Criteria

23 papers were gathered

* Design study

* VISSOFT conference

* Under maintenance and evolution categories

* 2003-2019

* A visualization system which is central to that research and has a task

Categories

Processing

Categories -> Task

* Help to detect code smells

* Help to analyze execution of the program
* Help to perform debugging

* Help to analyze user feedback

* Help to monitor code changes

* Help to monitor developer activities

Categories -> Data

* Source code * Relationships between code components
* Packages * User feedback

* Classes and objects * Metadata (such as version information)

* Test suite

* Bug report

* Events & sequences

Categories -> Data Processing

* Abstract Syntax Tree
* NLP Methods
* Static Analysis

* Dynamic Analysis

Categories -> Representation

* Techniques

* Textual Content (of the artifact being visualized)

Categories -> Availability

* Scalability (supports millions of LOC)

* Integration (with IDE)

CVScan: Visualization of Code Evolution

Evolution overview Right interval selector

Version
centric
filker

Left interval selector

File GRMAQ

A multi-view environment including:

* Line-oriented display of the changing code

* Each version is represented by a column

* Horizontal direction is used for time
,E%Hlmﬂln[_
e

* Source code A

I e |

Foi diferree

| BN
* A large variety of options T ...
-,
Fig. 14. L. Voinea, A. Telea, and J. J. van Wijk. CVSScan: Visualization of code evolution. In e ——

Proceedings of the ACM Symposium on Software Visualization, pages 47-56. ACM Press, 2005.

CVScan: Analysis

Task Data Processing

Help to monitor code changes and developer activities Static analysis to compute:
- What code lines were added, removed, or altered and when? - Line position

- Which parts of the code are unstable? - Line status

- How are changes correlated?

- Who performed these modifications of the code?

Data Availability
Source code (lines of code in different versions) Scalability: Y
Events and Sequences (sequence of commits) Integration: Y

Metadata (<id,author,date,code> for each version)

CVScan: Analysis (cont.)

Representation

Textual Content: Y

Techniques:

Encode: 2D plot, Color-map, Position

Reduce: Filter

Facet: Partition into multiform views, Juxtapose views, Linked highlighting, Linked navigation, Overview—detail

Manipulate: Select, Zoom and Pan

Discussion

* The most investigated task is monitoring code changes
* Animations become appealing to researchers

* NLP methods are applied recently

* The main challenge is the large amount of complex data

Questions?

