
InsightVis: A Visualization Tool to Assist CPSC 310 Course
Management and Design

Lucas Zamprogno
lucasaz@cs.ubc.ca

Syed Ishtiaque Ahmad
siahmad@cs.ubc.ca

Figure 1: Sketches of planned views for whole-course and individual-team views. On the left is the team overview visualization
that shows all the teams and their relation between percentage pass rate versus change in line of code. On the right is a flow
diagram that shows individual test performance verses number of lines of code.

1 INTRODUCTION
CPSC 310 is a Software Engineering course at UBC, and is required
for all Computer Science majors. As such the class can have very
high enrollment (approximately 380 students in busy terms) and
employs a large (approximately 18) TA team. The course has a
heavy project focus, with teams of two working over a couple
months to implement functionality according to a specification.
This specification is split into multiple chunks of functionality,
called deliverables, which have their own set of automated tests
used for marking.Wemake an attempt to tailor the course in certain
ways to encourage a good environment for students to develop their
project, pushing good practices like good unit testing and requiring
the use of a linter. However with such a large course it can be hard
to gain an overview of how all teams are doing, or how various
factors related to their success. We would like to improve this by
providing a more accessible overview of this information.

2 PERSONAL EXPERTISE
Themotivation for this project arises from our first-hand experience
of working as teaching assistants for CPSC 310. We have seen

teams struggle with passing test cases, performance falling across
deliverables and dealt with teams vague piazza questions trying to
get a sense of their struggles.

Furthermore, we maintain a service called Classy1 that displays
all the teams performance metrics like test scores, test coverage,
test passed and overall score across deliverables. So we already
know what data are available and what can be derived.

Additionally, we have designed the test suites and methods to
automatically grade student projects using Autotest2. As a result,
we have a clear understanding of the test suites and can use our
knowledge to interpret results from Classy to figure out which test
suites the teams are failing or passing.

Lastly, this project relates to our area of expertise that is software
engineering and it would be interesting to figure out the problems
to design an effective course.



, ,

Table 1: Some Typical Attributes. We may extract or derive more data as the project progresses if needed.

Attribute Name Attribute Type Description

testPercentage Quantitative Percentage of test passed against student code
coverageGrade Quantitative Percentage of code executed by student tests
finalGrade Quantitative Computed as 0.8*testGrade + 0.2*coverageGrade.
timeStamp Sequential Time when teams pushed the code
commitSha Categorical Sha-1 hash of submitted commit
teamId Categorical Contains the team number
deliverable Categorical The submitted delieverable, which is either d1, d2 or d3
testSuite Categorical All the test cases the team has to pass during a particular deliverable
state Categorical Indicates whether test passed or failed

3 DATA AND TASK
Our solutions use a combination of existing data and derived data.
We have archival data of all a prior term’s Autobot runs and test
results over the duration of the course. Additionally we can still ac-
cess the repositories of these teams, so it should be possible to mine
additional data related to their code base and project history. The
derived attribute ChangeInLOC describes the difference between
current lines of code and previous existing line of code across two
commits, found on our local GitHub instance. The changeInTest
attributes would be computed from test results overtime. We visu-
alize this along with other code metrics (Table 1) to gain a complete
understanding of difficulty of tests, struggling teams, the hidden
relationship between test cases.

Here we use the what-why-how framework [2] to abstract our
solution to the vis domain.

What. Table of graded submission items with the attributes de-
scribed in Table 1. This number can grow over time, but for the
dataset, we are working with, there may be roughly 180 teams, with
approximately 200 commits per team, for a total of 36,000 commits.
Each continuously growing team repository (over a series of com-
mits) ends with roughly 3,000 lines of code, with some reaching
around 7,000 maximum, totalling to 540,000 lines for all teams. The
testPercentage, coverageGrade and finalGrade attributes have values
between 0-100. Each deliverable (d1, d2 and d3) contain roughly 50
tests each. A test has a state attribute with 3 levels (i.e. passed, failed
or skipped). The timeStamp attributes contains date-time in the
range between start and end of the course for a specific semester.

Why. Get an insight into how the class is doing as a while, as
well as how individual teams are performing will help course staff
target who requires help, and how. Additionally, the difficulty of
tests and test dependencies could help the instructor design the
course more effectively for future terms.

How. Our visualization will include:
• Scatterplots with points as a mark representing teams and
configurable axes that can display the relationship between
two attributes at a single instance. For example, the correla-
tion between changeInLOC verses the testPercentage shows
how the class is progressing, and outliers may indicate teams
that are adding a lot of code without making progress, or
who have made very efficient progress.

1https://github.com/ubccpsc310/classy
2https://github.com/nickbradley/autotest

• Flow diagram encoded with color which differentiates be-
tween passed and failed tests. The width of the flow repre-
sents the number of tests passed or failed. This could track
teams progress over time.

• Interactions in the Vis:
- Hovering over the points in scatterplots will display teamId
- Dropdowns for both axes of the scatterplot to select at-
tributes of interest to visualize the correlation between them
- Animation to show changes in scatterplots when attributes
are selected
- Hovering over the flow will display the name of the test
and highlight it paths to bring it into focus
- Filter results of interest by selecting dropdown options

4 PROPOSED SOLUTION
We will have encoding for the main overview that that shows vari-
ous metrics across teams, and an individual team visual encoding
that shows the number of test cases passed as a team progresses
through their project (i.e. as code changes/commits increase). This
is represented in figure 1.

For the team overview, we are thinking of using scatterplots
with both the x-axis and the y-axis being configurable by selecting
values from a list of options like change in lines of code, percentage
of tests passed, code churn, and regression frequency.

The individual team view will contain a flow diagram that has
all the test cases represented in y-axis and change in number of
lines of code in x-axis that changes over time. Initially, the encoding
will start with all the test cases failing from the initial commit with
no work done. The width of the flow presents the number of test
cases failing. As time progress some test will pass and will emerge
as a green color flow which will cause the width of failing flow
to decrease. At some point later, the passed test case may fail and
merge back with the main flow of failed tests, increasing the width
of the red flow again.

As a stretch goal, we are thinking of including a test view which
will display the performance of tests across all teams according to
Figure 2. The test will be represented as doughnut shape pie charts
displaying the percentage of teams passing, failing, and skipping
that test using different colors. We would be able to sort the tests
shown based on these percentages. This will help us identify the
tests that teams are struggling to complete and give us overall



InsightVis: A Visualization Tool to Assist CPSC 310 Course Management and Design , ,

Table 2: Estimated work timeline

Task Est Hours Deadline Description

Pitch (x2) 8 Oct. 8 Create slides, rehearse pitch
Proposal 15 Nov. 4 Discuss project ideas, create mockups and write the proposal
Learning d3.js 10 Nov. 10 Read d3.js documentation and learn to program using d3
Project Review 1 3 Nov. 19 Prepare slides
Project Review 2 3 Dec. 4 Prepare slides, have some version of demo ready
Implementation Dec. 10 Completed Vis tool
- Prepare Data 15 Nov. 9 Clean, filter and restructure existing data. Fetch data from GitHub.
- Application structure 4 Nov. 11 Setup frontend, include all external libraries
- User interface (buttons, navbar) 6 Nov. 14 Setup the UI layout, add button and navigation control
- Team overview vis 26 Nov. 29 Implement overall teams view including search, filter and fetching data
- Individual team vis 18 Dec. 8 Implement individual team view for test cases
Presentation 12 Dec. 10 Prepare slides and rehearse
Final Paper 20 Dec. 13 Finalize paper. Draft to be written between Dec 3 - 10

sense of test difficulty across all teams. This can be important when
introducing new tests to the grader (which is relatively common)
and ensuring that it isn’t disproportionately easy or challenging. If
it seems like adding this feature is in scope, we may will elicit more
feature ideas from course staff in advance of implementation.

Figure 2: The test view shows the test list. Each test is repre-
sented by doughnut shape pie charts that show the percent-
age of the test passed, failed or skipped. The results can be
sorted according to passed, failed or skipped tests.

5 USAGE SCENARIO
Imagine you are a TA and youwant to know the correlation between
teams writing a lot of code and percentage of tests passed to see if
this gives you any insight about how teams are progressing. You
are also interested in finding outliers, both for highlighting teams
writing quality code (low number of lines with a high pass rate) or
messy/non-functional code (high number of lines but a low pass
rate). The TA would visit our application landing page. They will
see a scatterplot which has a drop-down in both the x-axis and
the y-axis that has a list of options. By default, it will already have
selected options which are change in the line of code (y-axis) versus
the percentage of the test passed (x-axis). For this scenario, they
do not need to change the selected options in the drop-down. The
result will show teams represented as points. A team that has a lot
of code change over time and is still failing tests may show as an

outlier, suggesting this team may have had to refactor many times
and is struggling to make progress.

When the TA clicks on any team of interest it will open up
another view with a different encoding that will show the flow
diagram. If there are tests rapidly switching back and forth between
the passing and failing flows, this would indicate that this team is
struggling to keep this test passing. There is a good chance they
are using some patchwork code to get it working, and do not have
a good understanding of the underlying functionality they need to
implement.

The TA could then return to the class overview scatterplot, and
change one of the axes if they want to see a different correlation.
An animation will transition between the two scenarios showing
how individual teams move and the overall class dynamic changes
under the new conditions.

6 IMPLEMENTATION APPROACH
We will implement our visualization as web application since web
applications are platform independent, generally very popular and
also because of our familiarity with using JavaScript3. Furthermore,
building it as a web applicationwill allow us to integrate with Classy
and Autotest easily. Note that integrating with these services are
not intended within the scope of this project, but we would like it to
happen at a later date. For our core visualization, we will be using
d3.js4 because it seems flexible, and simply because we want to
learn d3.js. Additionally, we will use a front-end component library
like Bootstrap5 to build user interface components and for setting
the layout of the application. We will also use jQuery6 for any DOM
manipulation we need.

7 MILESTONES AND SCHEDULE
We are prepared to spend about 140 hours together towards this
project. Table 2 provides the tasks breakdown for the project. Work

3https://developer.mozilla.org/en-US/docs/Web/JavaScript
4https://d3js.org/
5https://getbootstrap.com/
6https://jquery.com/



, ,

may be distributed unevenly between members over time as Lu-
cas has work front-loaded with courses largely wrapping up mid-
November whereas Syed will have exams into December.

8 PREVIOUS WORK
Ginda et al. designed metrics and visualizations intended to help
track student engagement and performance in an online course
setting [1]. Visualizations were used to show how students progress
through course material, and how different metrics correlate with
each other and overall performance. Similar to our intended ap-
proach, they produced multiple scatterplots that plotted individual
students in relation to grades and interaction with course materi-
als. They also plotted out a course structured, and used color and
position coded lines to show how students moved forwards and
backwards through course materials to see patterns in how students
sequence their learning and review content. They suggest that this
information can be used to optimize current course offerings and
plan future courses.

Strandberg et al. used test result data and represented test status
in an overview form using circular progress graphics [3]. Different
colors in the circular progress graphic depicts the progress of dif-
ferent test results, for instance green shows passing of tests, red
shows failure, while orange indicates that some tests remained in-
valid, unmappable, or unloadable. This is similar to our test view
summary represented with a colour encoded doughnut pie charts
to show percentage of instances that it is passed, failed, or skipped.
Furthermore, in the paper test failure pattern across time are repre-
sented as heatmaps (to include a diversity of test machines) which
performs a similar task to our individual team view flow diagram
that shows the test failing patterns over time.

REFERENCES
[1] Michael Ginda, Michael C. Richey, Mark Cousino, and Katy Börner. 2019. Vi-

sualizing Learner Engagement, Performance, and Trajectories to Evaluate and
Optimize Online Course Design. PLOS ONE 14, 5 (May 2019), 1–19. https:
//doi.org/10.1371/journal.pone.0215964

[2] Tamara Munzner. 2014. Visualization Analysis and Design. CRC Press.
[3] Per Erik Strandberg, Wasif Afzal, and Daniel Sundmark. 2018. Decision Making

and Visualizations Based on Test Results. In Proc. 12th ACM/IEEE International
Symp. Empirical Software Engineering and Measurement. Article 34, 10 pages.

https://doi.org/10.1371/journal.pone.0215964
https://doi.org/10.1371/journal.pone.0215964

	1 Introduction
	2 Personal Expertise
	3 Data and task
	4 Proposed Solution
	5 Usage Scenario
	6 Implementation Approach
	7 Milestones and schedule
	8 Previous Work
	References

