
InsightVis: Staff Dashboard for a Third-Year Software Engineering
Course

Syed Ishtiaque Ahmad, Lucas Zamprogno

Fig. 1. The class tab of the InsightVis dashboard, the main landing page of the viz. The left column is a navigation bar with page
controls, a legend, and box plot showing a high level grades summary. The center section has a small multiples scatterplot view
showing relationships between various course attributes. Users can scroll down to access a larger scatterplot with configuration options.
The right column highlights the tests and project features that are the least implemented by the class.

Abstract— Large classrooms place a high demand on course staff who are often strained for time. Course instructors need to be able
to make informed decisions about course changes, and teaching assistants need quick access to information that helps them support
students. To this end, we developed InsightVis, a dashboard to improve access to information for course staff of UBC’s Introduction to
Software Engineering. It features a class view that provides an overview of the whole class and supports broad analytics, and a team
view to show a team’s current and historical progress on developing their course project. InsightVis will be integrated into the currently
used Classy course management system used by the course.

Index Terms—Design studies, time series data, tabular data, visualization in education

1 INTRODUCTION

Computer Science 310 is UBC’s Introduction to Software Engineering
course, and is a requirement for all Computer Science majors. As such
the class have an enrollment of up to approximately 380 students during
one term. The course has a heavy project focus, with teams of two
working over three months to implement functionality according to a
series of specifications. More details about the course will be discussed
in Section 2. We make an attempt to tailor the course in ways that
encourage a good environment for students to develop their project,
pushing industry standard best practices like maintaining a strong test
suite and requiring the use of a linter to adhere to code style standards.

• Syed Ishtiaque Ahmad is with the University of British Columbia. E-mail:
siahmad@cs.ubc.ca.

• Lucas Zamprogno is with the University of British Columbia. E-mail:
lucasaz@cs.ubc.ca.

However, with such a large course it can be hard to get an insight about
how all teams are doing, or how various factors are related to their
success in the project. To accommodate such a large class size, the
course typically employs just under twenty teaching assistants (TAs)
to assist teams in their activities. The class forum Piazza1 can see
up to 2,000 posts over the course of a term through which they can
access TA help, as well through dozens of lab and office hours. Given
the amount of demand on TAs, having resources available to facilitate
TAs helping students effectively is important to help them keep up
this demand. There is an existing dashboard as part of the Classy2

course management system that the course uses which has most of the
data required, however, it is almost exclusively in a tabular format and
information needed is often split across many tabs. Our aim in this
work was to improve the abilities of course staff to monitor and tailor
the course by providing a more accessible overview of this information
in the form of a visual dashboard.

1https://piazza.com
2https://github.com/ubccpsc/classy



Fig. 2. The full team view tab of the dashboard. The left hand navigation panel contains a team select dropdown, and general information about the
selected team. The right hand side contains a combination of test history and feature readout of the most recent commit. Linked highlighting shows
the relationships between features and tests. Some of the test lists have been truncated to increase readability of this figure.

There are two broad use cases we are targeting with this work. The
first is to assist in monitoring the state of the class, and discovering
information that may be useful for modifying the course in the future.
The second use case is for providing information about individual teams’
performance. This case mainly arises either when a TA is assisting a
team and wants to get some context, or for identifying and monitoring
struggling teams.

The contribution of this paper is the design of this new system, and
the discussion of the features of interest for a class settings. In Section
2 we discuss the more of the system context and our data and task
abstractions. Section 3 describes the final configuration of our system.
The details of this implementation are discussed in Section 4. We
discuss the results of the project in Section 5. In Section 6 we elaborate
on the specific strengths and future work needed as well as lessons
learned. Lastly, in Section 7 we discuss related work in the field.

2 DATA AND TASK ABSTRACTIONS

In this section, we discuss the context and details of the data used in
our visualization, as well as the contexts in which this data would be
viewed by a user.

2.1 Data
We will start with a description of the source of our data and the context
surrounding it, then move on to a more detailed description of the data
used by our system.

2.1.1 Domain
The most important existing system involved in data generation in
the course is called Autotest. Autotest is the system responsible for
running and grading student projects and delivering feedback. Students
are graded every time they push changes to their repository, and a record
is kept of each grading run, leading to a grading history of each project
along with the actual software artifacts in the repository. The project
students must implement is a simple data storage and query language
system. Project work is divided up between multiple specifications
called deliverables, which typically encompasses three weeks of the
term each and its own set of automated tests the students need to pass,
though the specific details of these tests are hidden from the students.
For this project, we narrowed our focus to only two deliverables, D1
and D2. We chose to exclude D3 due to the fact that it is currently
undergoing changes and is already different at the time of writing from
when our data was generated, and will likely be changed even more
once this system is integrated into the course.

The main component of the grade is how many tests are passed out
of the total test suite, this makes up the test score, worth 80% of their

final grade. However many of the tests require more than one “feature”
to work in order to pass. In the context of the course project, a feature
is some subset of the project specification, for instance, a certain query
operator like a logical AND or the ability to process wildcard characters.
The feedback delivered to students is how well they are performing
across the various features required in the deliverable, for instance, they
might be passing six of ten queries requiring AND functionality. As
well as being shown to the students this information is also available to
course staff.

The second component of the grade comes from the students’ cover-
age of their source code with their unit tests, and is worth the other 20%
of their grade. This self-testing grading coupled with not directly show-
ing which of our tests they are failing encourages thorough self-testing
and the use of test-driven development. In addition to the Autotest data,
the student projects are maintained in locally hosted GitHub reposi-
tories. Given this, we have access to the states of each project at the
time that Autotest graded the project. From this, we can get details
like lines of code and number of tests by cloning and inspecting their
repositories.

2.1.2 Data specification

The source of most of our data is an approximately 100MB JSON
file which is the database entries of all grading runs in one term. The
remainder of the data is the source code of each student project. This
is acquired by cloning each team’s repository from our locally hosted
GitHub instance. After processing our dataset is essentially tabular
despite never being directly stored as such. The data we ended up using
is likely best discussed categorized by its source, either determined
by the course test suites and grading process, or metrics derived from
student source code.

The data from the course include grades and test data. Grades are
all on percentage scales based on the number of tests passed, and
coverage scores obtained. Number of tests passed has more nuance.
This attribute is capped at the number of tests in a deliverable, which is
typically in the 40-60 range though this varies by term and deliverable.
Additionally, we may choose to display subsets of the tests passed,
such as when displaying how many tests that require a specific feature
a student is passing. As a result, the maximum of this may be lower
depending on the context.

Regression rate is one metric which is derived and defined by us
for this project. It is intended to represent how much a team is having
their passing tests revert to a failing state, which we were originally
going to represent as a simple count. However, we realized teams that
push changes more frequently would have more chances for breaking
changes to be seen by our grader, so we decided to normalize it as an



Table 1. Details of attributes used in our dashboard. Those above the divider are visualized, those below were also used but only for internal
computation and labelling purposes.

Attribute Name Attribute Type Description

Test score Quantitative Percentage of test passed against student code, 0-100%
Coverage score Quantitative Percentage of code executed by student tests, 0-100%
Overall score Quantitative Computed as (0.8 * Test score) + (0.2 * Coverage score), 0-100%.
Test pass count Quantitative Number of tests passed, historically maximum is below 60, unlikely to go notably higher
Lines of code Quantitative Number of source lines of code in the student project. Typically 2000-3000, hypothetically unbounded
Student tests Quantitative Number of student tests run to generate coverage. Typically lower than 300, hypothetically unbounded
Regression rate Quantitative How often a test goes from passing back to failing, normalized by number of commits. Typically less than 3.
Deliverable Categorical Either “D1” or “D2”
Test state Categorical Either “passed” , “failed” , or “skipped”

Team id Categorical Identifier for a team, composed of members’ Computer Science IDs
Commit SHA Categorical Unique identifier for a commit
Timestamp Sequential Denotes the time that the commit was made

average rate of regressions per graded commit.
Lines of code and number of tests come from students and so are

much less controlled. Individual differences in approach and thorough-
ness when completing the project can lead to widely varying values
here, both of which are hypothetically unbounded. In practice, the
number of tests is constrained by a time limit on how long their code
is allowed to run in the grading service, and lines of code would be
constrained by students being unlikely to include dead code or useless
files in their projects. From the student data, we also used their team id
and commit SHAs as unique identifiers, as well as the timestamps from
the commit events as sequential markers for building out test histories.
These attributes are never directly visualized outside of the team id
being used as a label.

2.2 Tasks and Use Cases

There are two broad categories of use we are trying to simplify with
our solution, tasks focused on observing the class as a whole, and those
focused on a particular team.

Fig. 3. The global class score display from the class view navigation bar.
Shows the general state of progress on the project across the class.

2.2.1 Class focused
One common question that arises is very simply “How is the class
doing” or “how far have teams progressed” ? A common use of this
information is that a general summary of the whole class like this can
inform how much load TAs should expect at labs and office hours in
the coming weeks. The class doing poorer than expected at a given
point in time (current determined by the grade median compared to
prior terms) is a fairly strong sign that TAs are likely going to see an
increased number of students showing up to labs and office hours. This
summary is also important in gauging if new test batches or project
changes are too challenging or too easy. This would be seen as either
abnormally low grades on the deliverable, a certain feature, or a test
depending on the scale of the change. Previously the only methods
of investigating this are by looking at whole deliverable medians, or
visually scanning a table of recent commit runs3.

2.2.2 Team focused
The majority of day-to-day TA work is focused on helping teams work
through the challenges of building their projects, as well as assessing
and checking in with groups at the end of a deliverable. When teams
ask for help it is often useful to get a quick sense of a team’s general
progress up to this point. This would involve questions like “how are
they doing on X feature” , “what functionality is holding them back” ,
and “had they ever had this functioning correctly in the past” . With
this information it is easier to make judgements about how the team
may need to approach their project in order to improve.

3 SOLUTION

Here we discuss the context and evolution of our visualizations, as well
as the idioms that were used in the final build of our system.

3.1 Early concepts and design philosophy
Our initial concept for the InsightVis dashboard followed the split be-
tween class overview and individual teams that has been mentioned
in prior sections, but was only planned to include two specific visual-
izations. The first was going to be a configurable scatterplot for the
class view, where the user can change the axes, and click on points
to see the team view for that team. This largely made it into the final
implementation unchanged as seen in Figure 5, and will be discussed
more in Section 3. The team view however, went through much more
change. The initial concept was a Sankey-like diagram where all stu-
dent tests start out as failing, and you can see them flow into a passing
stream as the project is built as well see when the tests flow back to
a failing state if something breaks. The concept behind this was that
it would provide quick information about overall progress in the form
of the size of the passing stream, as well as how smooth the progress
has been by seeing how often flows from passing to failing occur and

3Or in some more unfortunate cases having students ask if a test is impossible,
and finding out the answer is “yes” .



how large they are. One downside we identified shortly before starting
was that it would be hard or impossible to pick out individual tests or
specific numbers using this encoding. Individual tests were of special
concern since students often ask about one specific issue or subset of
functionality they are working on when requesting TA assistance. After
producing a prototype as seen in Figure 8, it was clear that this idea
was not going to produce very usable results.

From there we pivoted to a strong functionality focused philosophy,
our designs do not need to be interesting but they should be accurate
and informative. To the informative end, we gave our selves some
easier to use frameworks to simply allow us more time to build in more
figures. For accuracy, we tried to use visualizations based on aligned
scales wherever possible. Fortunately, our scatterplot concept already
fit this framework and did not need to be fundamentally redesigned. In
the end, we believe this core lead to a vastly more useful design, if only
at the expense of some “wow factor” .

Fig. 4. Small multiples scatterplots from the class view. The six scatter-
plot configurations were chosen by the authors as the most likely to be
meaningful for course design questions.

3.2 Resulting solution

Our solution is split across two tabs, one for the class view and one
for the team view, as well as a side navigation bar. This navigation bar
remains largely the same between views showing controls and a legend,
but does get some context specific information depending on the tab.

3.2.1 Class view

Table 2. What why how analysis of the class view.

What Tabular grade records with tests passed and grades

What Mined repository data, derived regression score

Why Discover trends and outliers in team performance

Why Summarize test data from many teams

How Scatterplots, small multiples, box plot, stacked bar charts

How Scatterplot: Separate, change, select, juxtapose

How Tests: Order, align, aggregate

Fig. 5. The configurable scatterplot from the class view, it is larger and
placed below the small-multiple scatterplots. The axes attributes can be
selected from dropdown menus above.

Our course view features three main components, a broad grade
summary, scatterplots of project attributes, and the status of tests across
the whole class. A view of the whole view can be seen in Figure 1. The
grade summary uses a box plot to display the median, quarter intervals,
and maximum and minimums of student overall, test, and coverage
scores. This was chosen for being compact, and easily understood at a
glance. Users can also get detailed numbers by hovering over a box to
display the exact statistics. The summary plot can be seen in Figure 3.

We used two variations on scatterplots to display overall course
trends and relationships. Immediately displayed on screen is a small
multiples view showing six scatterplots selected as the most potentially
interesting or meaningful relationships. The top four involve various
attributes interactions with test pass rates, and the bottom two show
interactions with coverage. The small multiples scatterplots can be seen
in Figure 4. If the user has a specific question that is not answerable
using the small multiples scatterplots, they can scroll down to a larger
scatterplot which features configurable axes. Attributes are selectable
via dropdown menus and the scatterplot will update to reflect the new
configuration. The configurable scatterplot can be seen in Figure 5.
On all the scatterplots points start out partially transparent, and get
more opaque as they overlap to reduces issues with occlusion when the
axes have a small number of discrete values. Our scatterplots are also
interactive. Selecting a point (representing a team) on a plot will switch
to the team view for that team. To assist selecting overlapping or tightly
grouped points, or to see what teams share an area, users can use a
selection tool to pick a subset of points. This triggers a popup showing
all the teams selected, from which users can select a specific team from
a list to go to their team view. Also available on all scatterplots are
tools for zooming and download figures as images.

Lastly, the test statuses are displayed on the right hand side, both in
the form of individual tests and as overall feature sets, which can be
seen in 6. The individual tests are labelled with internal test code names,
and the feature statuses are labeled with the feature name. These are
essentially horizontal stacked bar graphs with sub-bars representing the
number of teams failing, skipping, or passing that test. The bars are
sorted with by proportion of failed tests, with the most failed tests at the
top. Skipped tests, despite also not awarding marks, are not included
in the most failed calculation because a skip is typically a symptom of
failing a different prerequisite test or feature. As a result a test being
skipped does not indicate people are struggling on that test. Axes for



specific numbering is omitted as relative challenge is primary question
served here as opposed to exact pass or fail rates.

Fig. 6. The tests status display in the class view, represented as horizon-
tal stacked bar charts. The sub-bars indicate test state, where orange is
failed, blue is skipped, and green is passed. Tests are sorted by most
failing first to bring attention to most challenging or potentially buggy
tests. The labels in the top plot are code names for single tests, whereas
the labels in the bottom are names of features comprised of multiple
tests

3.2.2 Team view

Table 3. What why how analysis of the team view.

What Tabular grade records with tests passed and grades

Why Discover patterns or anomalies in test histories

How Express, order

How Shared encoding, linked highlighting, side-by-side views

The team view can be seen in Figure 2 which contains a modified
version of the navigation bar, and a view of the teams tests currently
and over time. The navigation bar in our team view does not contain
a visualization. Instead, it holds a dropdown menu for team selection
and a plain text readout of team information. This answers very simple
questions of “Who is this team” and “How are they doing” that do not
require any extra visualization.

The other component of this view contains two plots, a history of the
status of each test, and the current status of each feature. The feature
view here is nearly identical to the stacked bar chart approach used in
the class tab. The one difference here is that skipped tests are collapsed
into the failed category to match the output available to students 4. The
test history portion is visibly similar to the stacked bar charts due to
encoding similar, however, the horizontal axis in this case represents a
commit/grade instance and states will not be clustered together. This
view is in essence “test by commit” matrix, with the rows visually split
by vertical space. This is to help users focus on the states of individual
tests over time. A closeup of part of this history can be seen in Figure
7.

4This simplification is due primarily to display limitations of other mediums
displaying this same data.

This tab does have interaction with the user’s cursor. If the user
wants to focus in on a certain commit, they can mouse over it and get
some lines to highlight that specific commit. Clicking will take the user
to that specific commit on the students repository so they can inspect
the code changes made presented there. Users can also use hover
interaction to get linked highlighting to better see the relations between
tests and the features they require. Hovering over a test will highlight
it, along with any of the features that comprise it. Conversely, hovering
over a feature will highlight it, along with any test that depends on it.

4 IMPLEMENTATION

In this section we discuss the technical detail of our implementation as
well as what components each author did work on.

Fig. 7. The test history from the team view. Each row is a single test
labeled with its code name, and each vertical slice represents a graded
commit. In addition to the fail, skip, and pass colors, grey is used here to
represent a failed build and the absence of a grade.

4.1 Technical Details

The first challenge of the project was data preprocessing. The process-
ing was done in two phases. First, we filtered out a portion of commit
events to include only entries for D1 and D2 made before the grading
deadline. Second, we got out lines of code metric with a bash script that
checks out the proper commit for each deliverable and gets summary
statistics from the src directory. The high level coordination of this
was done by using a JavaScript script that clones each team’s repository
and used git commands. This could typically be done easier through
the GitHub API but that was unavailable on UBC’s self-hosted GitHub
instance. After gathering all the required data for our visualization we
performed further data cleaning, filtering, aggregation and derivation to
create a JSON structure indexed by team’s name that facilitated creating
our visualization.

The back-end server of our solution is a bare-bones restify server in
Node.js. This is essentially a cut down version of the CPSC 310 starter
code originally developed by Reid Holmes but has also been worked
on by Lucas in the past.

We did the rest of the project in JavaScript along with a handful of
libraries. For generating our grid layout, buttons, navigation bar, and
popup dialog box in our dashboard we used Bootstrap5. We also used
plain HTML and CSS to improve the front-end design. To make our

5https://getbootstrap.com/



design interactive and dynamically generate HTML fragments we used
Javascript, jQuery6 and Handlebars7.

The scatterplots and box plot from the class view were done using
Plotly.js8. The box plot is largely stock aside from color and layout con-
figuration. We modified the scatterplots more, applying transparency to
data points, adding on click interactions, and implementing the select
behaviours.

The horizontal stacked bar plots and the test history we generate
through a combination of Handlebars and Bootstrap. Handlebars is
used to dynamically generate appropriate DOM elements based on the
data, where they are formatted as components of a Bootstrap progress
bar for styling. This functionality could be replicated with divs and
background fills, the use of bootstrap here was largely a small quality
of life choice as it was already in use for layout.

4.2 Work Breakdown

Due to Lucas having a difficult course with work front-loaded in the
term, and Syed having a difficult course with a final and project, work
ended up split primarily based on time. Syed wrote the project proposal
and did the initial data pre-processing and GitHub repository mining to
get our final data models. He then did the initial implementation of the
class view featuring the configurable scatterplot, box plot, and the “Top
Failed Test” stack bar chart. Lucas then did the initial implementation
of the team view with the team feature status, test history, and the linked
highlighting between the two. Then there was a period of time where
they both added to and improved each others sections. Syed improved
the styling of the highlighting in the test view, and Lucas added the
class feature status and new data options in the parser to feed to the
configurable scatterplot as suggested by a CPSC 310 instructor. At this
point, Lucas largely took over and implemented most of the changes
suggested by Tamara, as well as any preparation for the presentation
and the first draft of this report.

5 RESULTS

In this section we discuss some sample usage scenarios, and discuss
how effective we believe our solution will be when integrated with a
live course.

5.1 Usage Scenarios

Here we will walk through three possible scenarios of use for our
system. All these scenarios are rooted in past events that the authors
have encountered while working in the course.

5.1.1 Scenario 1: Planning a course change

In this scenario, an instructor is considering a change to a component
of the project. They notice that many students write a very large
number of tests in an attempt to increase their coverage score, however
they often fail to think much about what they are testing, and end up
writing many redundant tests. This takes up both their time and server
time to run their tests, so the instructor is considering a cap on how
many tests are allowed. However, setting too low of a cap could make
getting a good coverage score prohibitively challenging. To remedy
these concerns they can view the small multiples scatterplots on the
class tab. Here they can see that the number of tests is only loosely
related to the final coverage score, many teams are able to efficiently
get high scores using a relatively small number of tests, despite the
portion of the class writing hundreds of tests and struggling to get high
coverage. However, they can also see the scatterplot showing that teams
with notably low coverage often have lower test scores, so the impact
of reducing students ability to cover their code could have additional
indirect effects on their grade. The instructor now has more information
to make an informed decision that was not available before.

6https://jquery.com/
7https://handlebarsjs.com/
8https://plot.ly/

5.1.2 Scenario 2: New tests introduced

In an attempt to detect an edge case that students often fail to account
for, a new test has been introduced. It is just over a week into the
deliverable, and course staff want to ensure that the new test is not
unfairly hard on students. Looking at the class tab, the change is too
small to see on the overall grades or even the feature the test falls under,
but in the top failing tests view they can see that the new test is not
being passed by anybody! They quickly realise that a resource required
for the test was not also added to the deployed grading container, and
can fix the error before students notice the test was impossible or waste
time trying to make it pass.

5.1.3 Scenario 3: Team requesting TA help

A team has posted to piazza requesting help with a certain cluster and
not providing much more information. A TA can go to the team view,
select that team from the drop-down menu, and view their feature status
and test history. Mousing over the feature they requested help with
shows that a few tests needing that feature had previously passed, but
some started failing recently. Hovering over the place where one test
starts failing, they see another handful did as well. However, more tests
became passed overall so the students may not have been too concerned.
The TA can then click on that commit to go to the students repository,
investigate what change they made, and provide guidance about the
misunderstanding or technical error that lead to the issue.

5.2 Effectiveness of Solution

We were unable to do any proper evaluation of our system due to both
the fact that the project for the term had ended, and it would require
integration with existing infrastructure which will be discussed more in
Section 6.2. We did get a comment from a CPSC 310 instructor that it
“looks great” while giving feedback, so that is at least a good sign.

We can give our own opinions of how effective we believe the current
solution to be based on our experiences as teaching assistants in the
course. We believe this tool will be quite effective in enabling course
staff to do their tasks in two main ways. The first is by bringing to light
data that was previously completely inaccessible. Prior to this tool,
there was no way to see data about number of tests or lines of code in
a project other than manual inspection. Relations between tests and
features has previously not been visible to most TAs as well. Secondly
some of our visualizations take previously accessible data and present
it in a more usable manner. Viewing team test histories is possible with
current tools, but may not fit on a screen, would not show summary
data about the team, and could not be easily compared to the current
state of their features.

6 DISCUSSION AND FUTURE WORK

In this section we discuss the strengths of our solution, lessons learned
during its creation, and limitations that may guide future work on the
project.

6.1 Strengths and Lessons Learned

The most notable takeaway from the development of this project for us
came from our decision to change from our initial plan of using D3.js
and a Sankey-like flow diagram to bar plots and a library. Looking back
it seemed we were inadvertently prioritising frameworks that might
give more control to us, and idioms that would be more interesting
to look at. This ended up colliding with the reality that we need to
make a useful and usable system. Moving past these initial plans and
adopting higher level libraries gave us more time to add extra content,
and switching to more simple visualizations using aligned scales made
each component more effective. This leads to what we think are the
main strengths of our system which are the fact that it contains a wide
variety of information centralized in one place, and that this information
is able to be read accurately in a very short amount of time. Existing
tools for the course either do not present some of this data at all, or has
it scattered through different tabs or presented in tables. Our system
should be both faster and more informative for users.



Fig. 8. An early prototype of the idea to use a Sankey diagram to show tests as flowing between passing and failing states. Even though this version
was buggy (pass and fail bars are offset by one increment and flows from fail to pass are not displayed) it was clear that this would not be a practical
idiom to use in the scenario no matter how much we may be able to polish it.

6.2 Limitations and Future Work

One limitation of our system is that it was developed fairly strictly
for a standard 1080p screen. Any reduction in resolution risks having
different visualization elements overlap with each other. Increasing
resolution has less dramatic interference but does add extra whitespace
between elements, which is both visually unappealing and makes it
harder to keep two figures in view simultaneously. Ideally what we
would like to see is that after a certain threshold the page reorders
itself to a strictly vertical layout to be easily scrolled through, and fit
well on mobile devices. Many TAs do value being able to quickly get
team information on mobile devices, and this is currently completely
unusable in the system’s current form.

Also related to scaling, the test history in the team view should
support scaling both vertically and horizontally but currently does not.
Existing test suites do fit on a 1080p screen, however extended suites or
smaller viewports would prohibit seeing all tests at once and introduce
scrolling. Similarly absent is horizontal scaling which is needed to
compensate for the fact that different teams can have very different
numbers of grade records. A low number of records results in a lot of
extra white space between the test history and the feature status. A high
number starts overlapping with the cluster status display on the right
and detail become occluded.

Our scatterplots could also be extended to show best fit lines for the
data in each plot. This is supported by the Python version of Plotly
however is unfortunately absent in the JavaScript version. It should be
possible to manually calculate these lines and plot them manually, but
we would also like to support non-linear relationships which may be
more challenging to implement.

The largest challenge that needs to be dealt with is integrating the
visualization with Classy and hooking it into live data instead of our
preprocessed archival data. One design decision that will have to
be made is whether to take data directly from the existing course
database and transform it appropriately client-side, or to create a new
database view to that can be queried by our front end. Thankfully one
improvement that can be made here is to begin logging information
such as lines of code and number of tests during the grading process
so all the data used is already centralized to begin with. Additionally
the implementation may need to be partially rewritten into TypeScript
to match the rest of the Classy architecture, as well as adapted to
provide data on the deliverable D3which was skipped due to its ongoing

changes.

Fig. 9. An early plan for a test view, decided against in favor of the view
shown in Figure 6. This view was discarded due to not being compact
enough to fit many tests on the screen at one time.

7 RELATED WORK

In this section, we look at prior work using similar visual idioms
used in our system as well as previous applications of visualization in
educational settings. Ginda et al. designed metrics and visualizations
intended to help track student engagement and performance in an online
course setting [1]. Visualizations were used to show how students
progress through course material, and how different metrics correlate
with each other and overall performance. Similar to our class view,
they produced multiple scatterplots that plotted individual students in
relation to grades and interaction with course materials. They also
plotted out a course structure, and used color and position coded lines
to show how students moved forwards and backwards through course
materials to see patterns in how students sequence their learning and
review content. They suggest that this information can be used to
optimize current course offerings and plan future courses which aligns
with the goals we had when planning this project.

Strandberg, Afzal, and Sundmark used test result data and repre-
sented test status in an overview form using circular progress graph-
ics [4]. Different colors in the circular progress graphic depict the
progress of different test results, for instance, green shows passing
tests, red shows failure, while orange indicates that some tests remained



invalid, unmappable, or unloadable. This is similar to our test summary
and team views represented with a color coded stacked bar charts to
show proportions or instances in time that tests have a particular state.
In fact, this almost exactly matches one of our early designs that we de-
cided against in favour of the stacked bar charts. This earlier prototype
can be seen in Figure 9. Furthermore, in the paper test failure pattern
across time are represented as heatmaps (to include a diversity of test
machines) which performs a similar task to our team history graph in
the team view.

Prior work has taken similar approaches to implementing scatter-
plots as we did in our system. Metejka, Anderson, and Fitzmaurice
took a similar approach to dealing with over plotting and occlusion
in scatterplots [2]. Their focus was on finding a model for scaling
opacity depending on the characteristics of a plot using user survey
data. This sort of model would be useful in our scenario to replace the
process of manually tweaking opacity based on trial and error. Sadana
and Stasko looked at designing visualizations for tablet interfaces [3].
They adopted a similar approach to using configurable scatterplots as
in interface on tablets where screen real estate is limited

Vigentini, Clayphan, and Chitsaz discuss the benefits of data pro-
vided by the FutureLearn platform for MOOCs [5]. With their system,
they promote data availability to help instructors. They provide cus-
tomizable dashboard components through an open sourced repository.
Areas of investigation they look to support include learner engagement,
evaluation, education design, and research. Components provided to
create a dashboard include layout options, a variety of chart types and
features, and other interactions. This work has very similar intentions
to ours in enriching what course staff is able to accomplish in their
course.

8 CONCLUSION

In this paper, we described our course dashboard InsightVis designed
for UBC’s Introduction to Software Engineering course. It features
two views, a class overview and a team view. The class view includes
a box plot to show the current grade distribution of the class on the
project. It also contains a small-multiples collection of scatterplots to
view relationships between different course attributes. Relationships
not covered by the small-multiples can be viewed using a configurable
scatterplot. Test views show how the class as a whole is performing
across various tests and project features. A team view shows an individ-
ual team’s test history and current performance across project features.
Linked highlighting allows TAs to view the links between tests and
features. Interacting with the scatterplots in the class view can be used
to locate teams that can be immediately inspected in the team view.
These visualizations help course staff assess the state of the course, and
allow teaching assistants to quickly view information about teams they
are assisting.

ACKNOWLEDGMENTS

We would like to thank Tamara Munzner, Reid Holmes, Patrick Huber,
and Julia Zhu for their feedback on earlier plans and iterations of our
system.

REFERENCES

[1] M. Ginda, M. C. Richey, M. Cousino, and K. Börner. Visualizing learner
engagement, performance, and trajectories to evaluate and optimize online
course design. PLOS ONE, 14(5):1–19, May 2019. doi: 10.1371/journal.
pone.0215964

[2] J. Matejka, F. Anderson, and G. Fitzmaurice. Dynamic opacity optimization
for scatter plots. In Proceedings of the 33rd Annual ACM Conference on
Human Factors in Computing Systems, CHI ’15, pp. 2707–2710. ACM,
New York, NY, USA, 2015. doi: 10.1145/2702123.2702585

[3] R. Sadana and J. Stasko. Designing and implementing an interactive scat-
terplot visualization for a tablet computer. In Proceedings of the 2014
International Working Conference on Advanced Visual Interfaces, AVI ’14,
pp. 265–272. ACM, New York, NY, USA, 2014. doi: 10.1145/2598153.
2598163

[4] P. E. Strandberg, W. Afzal, and D. Sundmark. Decision making and visual-
izations based on test results. In Proc. 12th ACM/IEEE International Symp.
Empirical Software Engineering and Measurement, pp. 1–10, 2018.

[5] L. Vigentini, A. Clayphan, and M. Chitsaz. Dynamic dashboard for ed-
ucators and students in FutureLearn MOOCs: Experiences and insights.
p. 16.


	Introduction
	Data and Task Abstractions
	Data
	Domain
	Data specification

	Tasks and Use Cases
	Class focused
	Team focused


	Solution
	Early concepts and design philosophy
	Resulting solution
	Class view
	Team view


	Implementation
	Technical Details
	Work Breakdown

	Results
	Usage Scenarios
	Scenario 1: Planning a course change
	Scenario 2: New tests introduced
	Scenario 3: Team requesting TA help

	Effectiveness of Solution

	Discussion and Future Work
	Strengths and Lessons Learned
	Limitations and Future Work

	Related Work
	Conclusion

