
Visualization of Provenance System Log for

Intrusion Detection

Junfeng Xu (jfxu@cs.ubc.ca), Michael Kim (megabyte@cs.ubc.ca)

November, 4, 2019 (revision v0.2)

1 Introduction

This project aims to visualize a provenance system log for a intrusion detection.
There are numerous techniques to prevent malware, but recent development of
malware makes the task more challenging. Especially, there are family of mal-
ware called advanced persistent threats (APTs) which attacks a target PC in
slow and low fashion which could be difficult to be detected by system admin-
istrator in advance.

To solve this problem, there are researches on going to detect APT style
program by using a system provenance log. Specifically, Camflow[1] which is
maintained by researchers including UBC NSS lab could capture the system
provenance log at system level. It hooks system calls using Linux Security
Module (LSM) to describe the relationship between system nodes (file, sockets
etc.).

It would be a promising research, however, there is a challenge that the
researcher who wants to analyze the system provenance will face the high com-
plexity of provenance semantics. We will tackle this challenge using data from
UNICORN which is an unpublished advanced paper from Harvard. By visual-
izing the system provenance log in form of visualization, UNICORN framework
will give us the information about the frequency of specific sub ’provenance
graph’, which information we could construct histogram from and map the each
element of histogram to original system-wide provenance graph.

2 Visualization

Camflow, when set as recording whole system provenance data, produces around
0.5 MB/min of log data from target PC. Data follows the format from W3C
Data model which is in JSON format.[2] It produces the relationship between
system nodes in edge form. Thus one could imagine, millions of log in from of
edges will come out as in the JSON format.

However, UNICORN framework abstracts the JSON format into a few en-
coded field as follow. It restricts the provenance information, which contains

1



the information from system time to operation type into the simple relationship
encoding between nodes.

src ID dest ID src type dest type edge type

4 5 a c p
4 6 a c p
4 7 a c p
4 8 a c p
4 9 a c j

The framework calculates the frequency of similar sub-structure as follow.
For a detailed explanation, we are doing back and forth communication with
the PhD student from Harvard and our advisor Margo. Since a documentation
for UNICORN is quite limited, we will keep update this document to improve
that ambiguity.

hash value of sub-graph frequency

177670 12
177671 75
177672 7065
177673 1

By analyzing the log, we want to investigate what vulnerabilities are ex-
ploited in the graph. If intrusion is detected at time period T, and provenance
graph at T is G. At T-1 there is a similar graph G’, we may want to find the
difference between G and G’.

2.1 Domain Tasks

After talking to domain experts, we have identified the following domain specific
tasks that can be performed using our system:

• Analyze the changes in histogram throught time, especially to identify the
change in histogram that potentially leads to intrusion detections.

• Identify ‘neighbourhoods’ in the provenance graph.

• Map the histogram data back to the provenance graph

3 Implementation Plan

We plan to build a linked view that incorporates both the provenance graph,
which is essentially a directed acyclic graph, and the generated histograms.
Since the nodes are time-stamped, and that the histograms are generated over
time, we will implement navigation through time so that the user can view the
information at a earlier time.

2



Figure 1: Rough sketch of the visualization interface, including the streaming
provenance graph and the histograms.

We will investigate ways to highlight subset of nodes, and potentially the
links and precursor to the nodes, as we build our implementation. Due to the
large number of provenance graph nodes, we may also investigate how to reduce
the number of nodes, by either aggregating nodes into close-knit ‘neighbour-
hoods’, only showing a slice of the nodes that are within a certain time interval,
or filtering the nodes by some criteria.

3.1 Scenarios

After discussing the project with domain experts, we have established the fol-
lowing scenario in which our visualization can be utilized by an expert in the
investigation of malicious program behaviour:

After UNICORN detects an intrusion in a computer system, a secu-
rity researcher is looking at the provenance graph log and histograms
generated by UNICORN. The large number of data and seemly ran-
domly changing histograms make it hard for the researcher to iden-
tify the location of the breach directly.

By using our visualization, the researcher first looks at the his-
tograms, where a spike in the number of provenance graph nodes
with a certain label has been highlighted by the visualization. The
researcher then looks back at histograms generated at earlier time
stamps, and concluded that this anomaly is linked to the breach.

Then, the researcher selects the label in the histogram and highlights
all nodes in the provenance graph with the selected label. They
then highlights the nodes added right before intrusion was detected.
From the highlighted subset of nodes, the researcher was then able to
identify the vulnerability in the system where the breach occurred.

3



3.2 Technologies and Libraries

We plan to build our visualization implementation as an interactive webpage.
We plan to use the D3.js for managing the display of data, as one of us has pre-
vious experience with building diagrams using D3.js, and frontend development
in general. To simplify the visualization workflow, We plan to perform all data
processing in the browser using JavaScript.

3.3 Milestones

18 Nov establish the development environment, including version control, web
development environment, and data processing setup.

18 Nov proof-of-concept node-link diagram visualization done

19 Nov peer review 1

25 Nov provenance graph visualization and highlighting done

26 Nov peer review 2

2 Dec linking between the provenance graph and histograms done

10 Dec project presentation

13 Dec project paper due

References

[1] Thomas Pasquier, Xueyuan Han, Thomas Moyer, Adam Bates, Olivier Her-
mant, David Eyers, Jean Bacon, and Margo Seltzer. Runtime analysis of
whole-system provenance. In Proceedings of the 2018 ACM SIGSAC Confer-
ence on Computer and Communications Security, pages 1601–1616. ACM,
2018.

[2] Khalid Belhajjame, Reza B’Far, James Cheney, Sam Coppens, Stephen
Cresswell, Yolanda Gil, Paul Groth, Graham Klyne, Timothy Lebo, Jim
McCusker, Simon Miles, James Myers, Satya Sahoo, and Curt Tilmes. Prov-
dm: The prov data model. Technical report, 2012.

4


	Introduction
	Visualization
	Domain Tasks

	Implementation Plan
	Scenarios
	Technologies and Libraries
	Milestones


