
Provenance Histogram Explorer

Michael Kim, Junfeng Xu

Abstract—We present Provenance Histogram Explorer, a web based visualization solution for exploring and analyzing provenance
histograms generated by UNICORN, an advanced persistent threat (APT) detector. While UNICORN is effective in detecting malicious
activities by analyzing provenance log by processing it into efficient yet expressive provenance histograms, it also poses a challenge
to security researchers who wish to understand and study the said malicious activities, because UNICORN does not represent the
generated histogram in an intuitive and human-friendly way. We tackle this problem by designing and implementing a visualization
solution that takes in UNICORN’s histogram representations, and displays the histogram in an approachable manner, that facilitates the
analysis if malicious activities as reflected in the histograms by researchers, by making it easier to identify anomalies, to study the trend
in the program activities, and to understand the histogram in general.

1 INTRODUCTION

Data provenance is the metadata that records the history of the creation
and operations performed on a data object. This gives people a clear
picture of how a piece of data came to exist in its current state. The
application of provenance benefits a variety of disparate communities
including scientific data processing, cloud computing, databases, soft-
ware development, and storage [6]. For instance, provenance from
machine learning programs can potentially provide users valuable in-
formation about how training data influences the decisions made by the
program. The management of data provenance has been extensively
studied. There are many systems designed to support the analysis of
provenance data. [2, 1, 8, 7].

In this project, we focus on provenance data that describes the activi-
ties of operating systems. Such data is useful for many security-related
purposes, including the detection of system intrusions, as well as the
analysis of malicious programs. Namely, we deal with the provenance
data collected by the CamFlow framework [8] and processed by UNI-
CORN [4], a novel security application.

Since UNICORN processes provenance data into a textual represen-
tation, it is challenging for human researchers to read and understand
the process data, especially considering the quantity and signal-to-noise
ratio in the said data. In this paper, we propose a solution for visual-

izing a provenance distribution. The solution, Provenance Histogram
Explorer, operates mainly in three phases:

1. Collection of provenance data

2. Preprocessing of provenance data into histograms using a modi-
fied version of UNICORN

3. Visualization of provenance histograms

Results from our implementation demonstrate that our solution pro-
vides visualization features to assist provenance researchers.

2 BACKGROUND

We will now give an overview of the structure and meaning of the
provenance data we are working with. We will first introduce the
definition and format of the system provenance data, and then explain
how this data is processed by UNICORN into histograms.

2.1 PROV-DM
Provenance data represents causality between entities in the system.
The provenance, in a directed acyclic graph (DAG) form, enables users
to audit the history of system entities such as files, sockets by traversing
the graph.

In our solution, we use the core structures of PROV-DM to model
provenance data [9]. PROV-DM is defined by World Wide Web consor-
tium for client-side manipulation of provenance. The model consists of
the following key elements:

Fig. 1: PROV Core Structure [9]

• Entity: An entity can be considered as a generic representation of
different types of data objects, such as packets, files, applications,
etc.

• Activity: An activity represents actions over a period of time
performed upon entities, such as sending a packet or modifying a
file.

• Agent: An agent can be a user or a machine that is responsible for
activity acting on an entity. For example, in the system domain,
a Linux machine (agent) instructs sending (activity) a packet
(entity) via a socket (entity).

A provenance record (PR) expresses the process of generating en-
tities with activities by involved agents. According to PROV-DM, a
provenance record includes all the key elements described above along
with the relations (e.g., usage, generation, derivation, etc.) between
them, an example showed in Figure 1. Depending on real use cases, the
attributes of provenance records can vary.

2.2 CamFlow

To collect provenance data from the operating system in the form of
PROV-DM, we select CamFlow as our provenance collecting frame-
work [8]. The framework, which has been actively maintained by
research labs including the University of Bristol, captures the prove-
nance using a built-in framework in the Linux kernel; LSM (Linux
Security Module), and NetFilter. LSM is a framework to implement
mandatory access control (MAC), and it hooks every access to internal
kernel objects [3]. The NetFilter framework is also a set of hooks to
internal kernel objects; such as packet for network operations.

CamFlow uses a subset of types defined by the PROV-DM model:
Nodes have three types “agent”, “activity”, “entity” and edges have five
types “used”, “wasGeneratedBy”, “wasInformedBy”, “wasDerived-
From”, “wasAssociatedWith”. We relate two nodes using an edge. The
following lines, simplified version of CamFlow output represents that
an agent and activity are related by “wasAssociatedWith” edge.

<wasAssoc ia t edWi th>
c f :AQAAAAAABIACAAAAAAAAAAgAAAA (1)
{

‘ ‘ p rov : type ’ ’ : ‘ ‘ r a n o n ’ ’ , (2)
‘ ‘ prov : a g e n t ’ ’ : ‘ ‘ c f : IAAAAAAAABQUxzJBtiHPfgg ’ ’ , (3)
‘ ‘ prov : a c t i v i t y ’ ’ : ‘ ‘ c f :AQAAAAAAAEBa9wEAAAAAAAg’ ’ (4)

}

Listing 1: CamFlow Log Example

Every JSON component in CamFlow has two namespaces “cf:” for
CamFlow defined attributes, “prov:” for W3C PROV-DM defined at-
tributes. The “wasAssociatedWith” edge has an ID (1), two Unique
ID references (3) (4) to relate the agent and activity; “prov:agent”,
“prov:activity” [CamFlow]. The “prov:type”:“ran on” (4) represents
the relationship that the activity (task) was running on the agent (ma-
chine).

2.3 UNICORN
UNICORN is an “anomaly-based” advanced persistent threat (APT)
detector that “leverages data provenance analysis” [4]. In an APT, the
adversary’s goal is to gain control of a specific (network of) system(s)
while remaining undetected for an extended period of time. Given the
slow-and-low nature of APTs, analyzing individual system call logs
to detect point-wise outliers is often fruitless. Provenance connects
causally-related events in the graph even when those events are sepa-
rated by a long time period, thus, the framework use provenance as a
data source for APT detection.

2.3.1 Labeling vertex using provenance fields of CamFlow
Firstly, UNICORN takes provenance graph from a provenance collect-
ing framework such as CamFlow as an input. Then it hashes each edge
in graph with their given node/edge information. For instance, The
following line is one of the edge examples.

0 (1) 1 (2) 108147482735 (3) 75477540870 (4) 134094297061 (5)

Listing 2: UNICORN Label Example

“0” (1) represents an id of source node, and “1” (2) for a destination
node. “10814748273557” (3) is a source node type which is the result
of hash function of provenance fields. “7547754087012” (4) is the
destination hashed node type and “13409429706136” (5) is the hashed
edge type.

Table 1: provenance field examples

Field Description Cardinality
prov:type Provenance Type 96 (Edge), 27 (Node)
cf:secctx Linux Security Context 11
cf:mode inode mode 5

UNICORN use above 3 fields, which are a subset of provenance
fields, to produce a edge and node type. A cardinality of node in our
case, for instance, is 1,485. (Cardinality is a parameter, we can add or
delete with 27 provenance fields)

2.3.2 Builds at runtime an in-memory histogram
UNICORN consumes the edge information to build an in-memory
histogram. It labels each vertex in graph using aforementioned edge in-
formation. For instance, if one vertex has an incoming edge then it uses
destination node type as its label and vice versa. Then UNICORN iter-
ates this process for every vertex, and it uses neighborhood information
to relabel the node. That same vertex mentioned before, the framework
hashes an original label, incoming edge type and neighborhood node
type. We can set how many hops we take to search neighborhood
information. If hop value, is 3 then, it traverse three consecutive edges
to abstract the graph substructure.

[58572106876571122]−>1 (1)
[62873799927944020]−>1
[66800991716430997]−>26

Listing 3: UNICORN Histogram Example

The above is the example of histogram in a text form that we use for
our visualization. “58572106876571122” (1) is the label of a bin in the
histogram, and 1 is the size of that bin. Each bin label is the hash value
which represents a certain type of graph substructure. And that type of
graph substructure, based on UNICORN algorithm, is constructed by
abstracting the information of neighborhood information.

3 DATA ABSTRACTION

The data visualized in Provenance Histogram Explorer is a time-series
data consisting of many discrete time frames, where each time frame
is a duration in the time. Each time frame contains a histogram that
describes the changes made to the provenance graph during the duration

of that time frame. In the histogram, each bin corresponds to a certain
graph substructure in the provenance graph, and the label of each bin
is the hash value generated by UNICORN for this substructure. We
consider the labels of the bin meaningless, as we currently do not have
the capability to map the labels back to the graph substructure.

The cardinality of the whole data set depends on how long did
data collection continue, with no fixed upper limit. There could be
thousands of different bin labels for a complex program. The size of
each histogram bin in a single time frame may range from less than ten,
which is the most common case, to many thousands.

The raw data is collected by us using CamFlow and then processed
into histogram using UNICORN in the process. We will describe the
workflow in detail in section 6.1. The actual data that our application
visualizes is stored in a plain-text, CSV-like format, where each file
represents one time frame.

3.1 Example Data
To collect an example data set to be used in the demonstration of our
application, we recorded the provenance data generated by running
Firefox for a short while. We chose Firefox Because it interacts with
a variety of system entities, including processes, files and network
sockets. The workload was a minute of opening Firefox, searching on
Google, and closing Firefox.

After parsing the CamFlow log into UNICORN form, the number of
edges was 3,616.

4 TASK ABSTRACTION

We identified three major tasks researchers using UNICORN wish to
perform using a visualization solution. These tasks were derived from
interviews we had with Professor Margo Seltzer, and Michael Han, a
PhD student of Professor Seltzer.

• Finding and analyzing anomalies that triggered UNICORN: the
final UNICORN output is a binary value that says if there is an
intrusion or not. Since it is a machine learning model in the
end, it needs to be retrained by human researcher when if the
prediction is wrong. However, it iteratively consumes consecutive
hash values to build a model, it is not easy to identify the feature
that triggered the system for validation purpose. A visualization
system would help the researchers in finding the exact reason why
UNICORN decides that there is an intrusion.

• Exploring the ‘shape’ of the histograms of different programs: A
set of applications which has similar behaviors makes difficult
to identify the difference in provenance graphs. Compressor and
Ransomware, for instance, they share behaviors like encrypting
the file and writing it to disk. Researchers want to see the subtle
differences highlighted by visualization channels.

• Identifying the overall trends in time-series histograms: Prove-
nance researchers can monitor the overall trend in provenance
graph. This feature gives an insight about what kind of graph
substructures are prevalent across different time windows. Not
only researchers, but system administrator can exploit those dis-
tributions to optimize or monitor the system.

Since the UNICORN output is textual, it is not intuitively under-
standable by researchers.

5 VISUALIZATION SOLUTION

Our purposed visualization solution has two views:

A “time axis” on which summaries of the histograms in different time
frames can be compared.

A histogram view that shows either the change in substructure dis-
tribution in a single time frame, or the comparison of the said
distribution between two time frames

5.1 The “Time Axis”
As our system deals with time-series data consisting of many time
frames, we believe it is necessary to include a view that summarizes the
time frames with regard to its location in the time line. In particular, we
wish to somehow encode how “anomalous” each time frame is, since
the identification of anomaly is both how UNICORN operates, and
what our users are interested in.

The ‘time axis’ consists of a sequence of time frames. Each time
frame is displayed as box with a light grey background and an orange
“header”, in which the exact time of that time frame is displayed. The
time frames are placed on a scrollable horizontal “axis” in chronological
order. The brightness of the “header”’s background colour encodes the
derived ‘importance’ of individual frames. A darker colour means a
frame with a higher importance, which could indicate an anomaly in
the original provenance graph, which in turn may indicate a malicious
action performed by the program. The lower part of the box is the
backdrop for the summary of highlighted bins, which we will discuss
in section 5.3.

Initially, we considered an alternative solution where the “time axis”
would go vertically instead of horizontally, and each time frame would
contain a summarized version of the histogram. We eventually decided
that this idea is suboptimal for the following reasons:

• It adds visual clutter to the “time axis”, which distracts us from
identifying “important” time frames.

• It is hard to know a priori which bins are the most suitable to be
put in the summary.

Fig. 3: The first three time frames from the Firefox data. The second
frame (t = 2) has a very dark colour as this time frame contains an
exceptionally high number of changes

Calculation of “Importance”
As previously mentioned, we are interested in identifying anomalous
time frames. Therefore, for each time frame, we derive a ‘importance’
value that measures how much does this time frame deviates from the
rest.

There is no existing measurement for such an “importance” value,
so we developed our own algorithm for the calculation of “importance”:
First, for each histogram bin, we calculate its median size across all
time frames, as the “reference” value for each frame. Then, for a single
time frame, we calculate the absolute difference between all histogram
bin sizes in this time frame and the corresponding reference value.
The “importance” of a single time frame would be the sum of all such
differences, multiplied by some scaling constant α .

The above can be written as the following formula:

It = α ∑
l∈L
|Ht(l)−median({Ht ′(l

′)|t ′ ∈ [1,n], l′ ∈ L})| (1)

where

• It is the importance of time frame t.

• α is a constant that scales the “importance” value.

• n is the number of time frames.

Fig. 2: An annotated overview of the visualization design. A: the “time axis”; A1: a frame on the “time axis”; A2: the two selected frames on the
“time axis”; A3: the summary of the highlighted bins; B: the histogram view; B1: the UNICORN hash value associated with each histogram bin;
B2: a bin in the histogram; B3: a highlighted bin in the histogram.

• L is the set of hash values assigned to histogram bins.

• Ht(l) is the size of bin l in time frame t.

We multiply the sum of differences by a constant α to control the
possible range of derived “importance” values, such that it would not
be too large or too small to be used when calculating the colour of
the time frame “header”. For the Firefox data set, we set α = 0.001.
Future developments of our system should look into the possibility of
calculating α from the properties of the data set.

Instead of median, we could have used the mean value as reference.
However, since we are expecting the presence of anomalous values that
deviates from the rest hugely, the mean value would skew upwards. We
also considered using total size of all histogram bins at a time frame
as the importance (which is essentially using 0 as the reference value),
but this would not perform well in cases where, for example, all but the
anomalous time frames have large histogram bins, in which case the
anomalous time frames would instead be considered not “important”.

Navigation
In addition to giving summary of time frames, the “time axis” also
serves as the main navigation control of the application. The user can
select a time frame by clicking on the corresponding square on the
“time axis”, and the histogram at that time frame will be displayed in
the histogram view.

5.2 Histogram View
For each time frame, the user may also be interested in the type of
provenance graph substructures that occurred, as well as the number of
occurrences, which may indicate the type of actions performed by the
program and the number of times the said actions are performed.

The histogram view gives a detailed view of the size of histogram
bins in selected time frames, represented as an ordinary histograms,
where the width of bars encodes the size of corresponding bins, linearly
scaled to fit in the size of the histogram.

As mentioned in the previous section, the user can click on a time
frame to “select” the time frame. The histogram of the selected time
frame will then be displayed in the histogram view. The user can
select two different time frames at the same time. In this case, the two

histograms to be compared side by side. For the sake of consistency,
the histogram belonging to the less recent time frame will always be on
the left side, in light blue, while the more recent one will always be on
the right, in light green. The background of selected time frames will
also change, to correspond to the colour of histogram bins.

The histogram bins in the histogram view are sorted in descending
order of total size, that is, the size of this bin in the left histogram plus
the size in the right histogram. This is because larger histograms are
more likely to be “interesting”, as they are more likely to recur in other
time frames. Very large bins may also trigger UNICORN.

We include a scale for the histogram bins on the top of the histogram
view, but only label the origin, as well as the bin maximum size in
the currently selected time frames, so that the users may gain a rough
understanding of the scale of the selected time frames. We believe that
for our user, it is more important to perform comparison and to get an
understanding of the “shape” of the data, than to get accurate sizes of
bins.

5.3 Highlighted Bins
Another important part of the analysis of the histograms is to understand
how individual bins in the histogram changes over time, and how they
compare to other bins during the course of the change. It would be
useful to, for example, to see what is the trend of one individual bin, and
identify the association between correlated bins, which could indicate
a connection between the program activities that these bins reflect.

The user can highlight individual bins by clicking on either the
histogram bars, the associated hash value, or the rectangle “checkbox”
to the left of the hash value. In the histogram view, selected bins
are outlined. The colour of the outline is the colour assigned to the
highlighted bin. The highlighted bins will then show up in the “time
axis”: each time frame will have a bar whose length encodes the size
of the highlighted bin in that time frame.

Each highlighted bin is assigned with a colour. The colour is merely
used to associate highlighted bins in the histogram view with bars in
the “time axis”. The colours themselves have no meaning, and do not
correspond to particular hash values. We put an effort into selecting
the suitable colour scheme to ensure that the colour of highlighted
bins do not clash with other colours. Eventually, we decided to use
a light colour for the histogram bars, as they are big enough to stay

Fig. 4: Two histograms compared against each other.

Fig. 5: The Firefox data set with some histogram bins highlighted. A number of patterns and trends can be noticed: the blue bin occurs in all time
frames, but its occurrence is especially numerous in the second time frame; the green, red, and orange bins always have the same size; and the
purple bin does not occur anywhere other than the third time frame.

distinguishable on a white background even with a light colour, and use
the dark version of the same colour scheme as the highlighted colours.
In this way, we trivially avoid having indistinguishable colours, and
also reduced the total amount of hues in use in our application.

6 IMPLEMENTATION

The technical implementation of this project can be broken down into
two components:

The data processing pipeline takes in Camflow log, and outputs time-
series histograms which are then used by the application. a modi-
fied version of UNICORN that outputs the histograms is used in
the process.

The Provenance Histogram Explorer Application is a web applica-
tion that displays the time-series histograms.

The two components are developed separately. They both function
independently without invoking each other.

6.1 Data Collection and Processing
Our application and UNICORN are based on the provenance data
collection. We define the process for ease of access to an endpoint; our
visualization solution.

Firstly, CamFlow is installed on machine running Fedora. The
framework accepts a list of file to track and option for collecting. (e.g.
Enable whole system provenance, filter out some specific nodes) Then
it produces provenance in the form of binary and the file contains
JSON records. Then we copy the Camflow log into the directory of
UNICORN.

Secondly, UNICORN translates Camflow log into UNICORN for-
mat. Because it hashes a set of selected fields in provenance log, UNI-
CORN and our visualization can be generalized to other provenance
framework. Once a list of edges is ready in a form of text file, discussed
in detail in Data Abstraction, UNICORN starts to build a in-memory
histogram using Graph-chi computation [5]. UNICORN visits every
vertex iteratively and relabel each node based on the information of
neighbor nodes. With this log, one can use our visualization solution
without further manipulation.

We inserted around 10 locations in UNICORN code to log the evolv-
ing histograms, saving the internal histograms into plain text files. With
this log, one can use our visualization solution without running UNI-
CORN again. Also, future users can map the graph substructure to
element of histogram.

6.2 Provenance Histogram Explorer Application
The visualization solution is built as a web application, written in
Vanilla JavaScript and plain HTML. It allows the user to upload his-
togram files in CSV format, where each file corresponds to one time
frame, and visualizes the data as described in section 5. The web appli-
cation is responsible for calculating the importance of time frame. Other
than that, the web application does not perform any data processing.

The “time axis” and the histogram view are both rendered as SVG
elements on the web page. We used D3.js to handle the binding between
SVG DOM elements and the data. d3-interpolate, d3-color, and
d3-scale-chromatic was used to handle the colour schemes.

The entire application consists of two files: vis.html which is the
main web page for the application, and vis.js which is the JavaScript
that controls the rendering of the visualization views, handles uploads,
and deals with navigation. The D3.js and other libraries are imported
by loading their code from CDNs. Other than that, the application is
entirely self-contained and require no external tools to build or deploy,
and can be loaded locally in the browser, making it easy for us to
develop, and for future users to set up or integrate into existing systems.

6.3 Contribution Breakdown
The implementation of the data collection and processing pipeline, as
well as the collection of example data used to aid development and
evaluation, was carried out by Michael Kim.

The web application was written and tested by Junfeng Xu, who also
produced all application screenshots included in this report.

7 RESULT

We will now give an evaluation of the project with regard to the opinion
of the future users, and the performance of the application.

7.1 User Interview

We evaluated the application by conducting an interview with Professor
Margo Seltzer, a co-author of the UNICORN paper. We loaded the
Firefox data set, and gave her a short introduction of the various part of
the system, showing the various views, and the highlighting capabilities.
We then asked for her opinions about the application, and took notes of
her feedback.

She reported that the visualization had successfully made her inter-
ested in the data, and wished to “see more”. She found the visualization
“super interesting”, especially because it offers the capability for users
to see the “trajectory” of bins over time.

However, she also commented that the example Firefox data set
is not ideal. She pointed out that it would be more useful to show a
comparison of benign and malicious programs. She also questioned
our choice of displaying the change (“delta”) of histogram bins, as
UNICORN accumulates the size of histogram bins, using a “decay”
value to drop older entries in the histograms.

In addition, she suggested that we can define each time frame by
the number of provenance graph edges rather than time, which means
that each time frame will contain the histogram for, say, one thousand
provenance graph edges, instead of all edges that appeared in a one
second interval.

7.2 Performance

Initially, we had a concern about the performance of the web application
due to the amount of data we were expecting to be displayed. However,
by choosing to visualize only the changes (‘delta’s) of histogram bins
and dropping bins that contains only one item, we managed to greatly
reduce the number of items to be displayed on the web page.

On a laptop with an Intel Pentium Silver N5000 CPU, which can be
considered weak by 2019 standard, the web application runs without
issue with the Firefox data set loaded. Navigating and scrolling through
the views are smooth. A small but noticeable lag occurs when initially
loading the data set, which could be attributed to the calculation of
“importance”. However, since we do not expect data set to be loaded
frequently, we do not consider this to be a major issue in our application.

8 LIMITATIONS

In general, due to the limited time available for this project, we had
to drop a number of features from our resultant application. This puts
some limitations on the use of our system. Nevertheless, we shall
discuss in the next section about how these issues can be addressed via
future extensions.

Right now, the most significant issue is that the histogram bin labels
are not meaningful. They are merely hash values for graph substruc-
tures generated by UNICORN. It is impossible to know from these
hash values what actual activities were performed. While this does
not prevent the users from gaining higher-level understandings of the
provenance data of a single program, any attempt to investigate the
actual behaviours of the programs will be hindered by the lack of means
to interpreted the histogram bins.

Another limitation is that the application is unable to compare the
histograms of different programs. This makes certain interesting use
cases impossible. For example, a user may be interested in the dif-
ferent between the provenance graph of compression programs and
Ransomwares, which cannot be visualized user our current implemen-
tation. This also has an impact on our choice of example data.

9 FUTURE WORKS

We will now list some potential future improvements to Provenance
Histogram Explorer. Most of them either address one of the limita-
tions described previously, or implement one of the features that were
dropped due to time constraints.

Mapping back to the provenance graph
We originally planned to make it possible to map the histogram bins
back to the corresponding graph substructures in the provenance graph.
However, we had to drop this feature because of a lack of time. This
feature would help tremendously with deeper investigation into the
program activities, as the users would then be able to see exactly what
program activity does a certain bin in the histogram reflect.

Implementing this feature would require changes to be made to
UNICORN, so that each bin label in the output would be associated
with the corresponding graph substructure. We also need to consider
the visualization solution for such graphs, including its integration into
the existing application.

Comparison of multiple histograms
Another extension is to add the capability to load and compare multiple
histograms, which would help with comparing malicious and benign
programs. While this does not pose any technical difficulties, we
believe this would require some significant amount of change to the
existing visualization solution, in order to accommodate the increased
amount of information on the screen, and to handle the comparison of
potentially multiple histograms.

Derivation of different parameters for time frames
While the current algorithm for calculating “importance” is effective
in finding time frames that are more likely to be “interesting”, we feel
that some other measurements, such as the correlation between time
frames, may also work. An evaluation of alternative metrics can be a
worthwhile future extension.

As mentioned in section 5.1, the α constant in the “importance”
formula, is set to α = 0.001 for now. This may not work for all data
sets, and alternative values, or algorithms to calculate α , may also be
developed.

Changing the definition of time frames
As pointed out by Professor Margo Seltzer during the interview, we can
choose to define each time frame by the number of provenance graph
edges, instead of actual time. Doing so would make histograms more
reproducible, as the running time of the programs will no longer have
an effect on the histogram generated. This approach also normalizes
the size of time frames, making direct comparison more feasible, and
reducing the amount of effort required to handle the potentially large
difference between the scale of different time frames.

10 CONCLUSION

We developed Provenance Histogram Explorer, a visualization solution
for the analysis of provenance histogram data. Our solution is simple
and clear, catering for the domain-specific needs of security researchers
working with provenance data. The solution succeeds providing suf-
ficient information for users to get a high-level understanding of the
provenance data they are analysing. However, there are still room
for future improvement, that would enable our users to perform more
in-depth analysis using our tool.

REFERENCES

[1] Sherif Akoush, Ripduman Sohan, and Andy Hopper. “Hadoop-
Prov: Towards Provenance as a First Class Citizen in MapRe-
duce”. In: 5th Workshop on the Theory and Practice of Prove-
nance, TaPP’13, Lombard, IL, USA, April 2-3, 2013. Ed. by
Alexandra Meliou and Val Tannen. USENIX Association, 2013.

[2] Laura Chiticariu, Wang Chiew Tan, and Gaurav Vijayvargiya.
“DBNotes: a post-it system for relational databases based on
provenance”. In: Proceedings of the ACM SIGMOD International
Conference on Management of Data, Baltimore, Maryland, USA,
June 14-16, 2005. Ed. by Fatma Özcan. ACM, 2005, pp. 942–944.

[3] Antony Edwards, Trent Jaeger, and Xiaolan Zhang. “Runtime
verification of authorization hook placement for the linux security
modules framework”. In: Proceedings of the 9th ACM Conference
on Computer and Communications Security, CCS 2002, Washing-
ton, DC, USA, November 18-22, 2002. 2002, pp. 225–234.

[4] X. Han et al. “UNICORN: Runtime Provenance-Based Detection
for Advanced Persistent Threats”. In: Proceedings of the Network
and Distributed System Security Symposium (NDSS) (2020).

[5] Aapo Kyrola, Guy Blelloch, and Carlos Guestrin. “GraphChi:
Large-Scale Graph Computation on Just a PC”. In: Presented as
part of the 10th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 12). Hollywood, CA: USENIX,
2012, pp. 31–46. ISBN: 978-1-931971-96-6. URL: https://www.
usenix.org/conference/osdi12/technical-sessions/
presentation/kyrola.

[6] Kiran-Kumar Muniswamy-Reddy et al. “Provenance-Aware Stor-
age Systems”. In: Proceedings of the 2006 USENIX Annual Tech-
nical Conference, Boston, MA, USA, May 30 - June 3, 2006. Ed.
by Atul Adya and Erich M. Nahum. USENIX, 2006, pp. 43–56.

[7] Hyunjung Park, Robert Ikeda, and Jennifer Widom. “RAMP: A
System for Capturing and Tracing Provenance in MapReduce
Workflows”. In: PVLDB 4.12 (2011), pp. 1351–1354.

[8] Thomas F. J.-M. Pasquier et al. “Practical whole-system prove-
nance capture”. In: Proceedings of the 2017 Symposium on Cloud
Computing, SoCC 2017, Santa Clara, CA, USA, September 24-27,
2017. 2017, pp. 405–418.

[9] PROV-DM Model. https://www.w3.org/TR/prov-primer/.
Accessed: 2019-12-10.

https://www.usenix.org/conference/osdi12/technical-sessions/presentation/kyrola
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/kyrola
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/kyrola
https://www.w3.org/TR/prov-primer/

	Introduction
	Background
	PROV-DM
	CamFlow
	UNICORN
	Labeling vertex using provenance fields of CamFlow
	Builds at runtime an in-memory histogram

	Data Abstraction
	Example Data

	Task Abstraction
	Visualization Solution
	The ``Time Axis''
	Histogram View
	Highlighted Bins

	Implementation
	Data Collection and Processing
	Provenance Histogram Explorer Application
	Contribution Breakdown

	Result
	User Interview
	Performance

	Limitations
	Future Works
	Conclusion

