Visualizing Clinical Data of Patients at the Child and Adolescent Psychiatric Emergency Unit

John-Jose Nunez
Mona Fadavi
Background

- Child and Adolescent Psychiatry Unit (CAPE) only short-stay psychiatric ward in the province for 17 year old or younger patients
- Common presentation: suicidality, depression, psychosis
- Ongoing large multi-disciplinary project to collect data on patients and use for suicide prediction
Motivation/Who

We posses a manually created database covering around 333 patients

Would like to visualize their data!

Vis would allow exploration to learn about out patients

Little previous work looking at this!

Users: hospital managers, psychiatrists, researchers
Motivation/Who

Example Questions:

- Do our patients follow expected patterns of illness eg more depression in the fall, mania in the spring?
- Does suicidal ideation/attempts increase at stressful points during the school year?
- Is medication use consistent with evidence-based guidelines?
Motivation/Who

Important consideration:

- Current physician workflows incorporate very little technology, and very little vis!
- Doctors are very scared of complicated Vis!
- Our Vis must be very simple, at least initially
Data/What

Items = patients = 333

Attributes (Categorical, Ordinal, Quantitative)
- Demographics (gender, age, ethnicity, postal code)
- Date and reason for admission
- Medications and dose
- History:
 - Psychiatric history (diagnoses, previous admissions)
 - Medical history (diagnoses, surgeries)
 - Substance use history
 - Social history (family structure, foster care)
- Symptoms on admission
- Various clinical scale quantifying various symptoms
Data is hierarchical! E.g.

- **Diagnosis**
 - Psychotic Disorders
 - Schizophrenia
 - Brief Psychotic Episode
 - Depressive Disorders
 - Major Depressive Disorder
 - Persistent Depressive Disorder
 - Anxiety Disorders

- **Medications**
 - Antidepressants
 - Fluoxetine
 - Sertraline
 - Antipsychotics
 - Sedatives
 - Stimulants
Data also is also repeated for different time periods.

- **Diagnosis**
 - Diagnoses at admission
 - Diagnoses at discharge

- **Medications**
 - Medications in last 12 months
 - Medications on admission
 - Medications on discharge
Actions/Why

- **Consume**
 - Discover - definitely!
 - Present – maybe?
 - Enjoy – no!

- **Produce**
 - Probably not yet, maybe in the future?

- **Search**
 - Explore/browse more than others, but likely all search tasks.
 - We won’t be visualizing individual patients, just varying subsets

- **Query**
 - Identify, and summarize will be important. Compare will be too, unsure whether we’ll need a specific compare function
Actions/Why

- **Consume**
 - Discover - definitely!
 - Present – maybe?
 - Enjoy – no!
- **Produce**
 - Probably not yet, maybe in the future?
- **Search**
 - Explore/browse more than others, but likely all search tasks.
 - We won’t be visualizing individual patients, just varying subsets
- **Query**
 - Identify, and summarize will be important. Compare will be too, unsure whether we’ll need a specific compare function
Actions/Why

- Filtering + Compare will be a key feature.
- E.g. compare antidepressant medications of males vs females.
- Users will likely not want to view all data at once.
- Different users may have widely different use cases.
Design Principles

- Must start as simple, not be intimidating, “not mathy”
- Must allow different use cases
- Must allow filtering/selection (both attributes and patients)
- Must be intuitive!
Implementing: Software

• Python/pandas for data processing
• Plotly python library for vis, at least initially
• Possible re-implementation in D3, if it’s a.) possible with time constraints and b.) helpful/allows better vis
Implementing: Design

• Idioms: mostly pie charts and time-series line graphs
• Why? – Doctors are familiar
Implementing: Design

• Initial view is of a line graph, pie chart
• Users can click and drag part of either into a new pie chart/line graph, which filters for subjects included in that piece of the pie
• Hierarchical tool then allows users to select what attributes the line graph or pie chart shows
• Can then iterate to more levels
Showcase!

• Let’s show you both a paper and pen version, and what we have so far