Interactive Explainers for Geometry Processing Algorithms

Jerry Yin and Jeffrey Goh

Enter your mesh definition in OBJ format below...

v 1.0 4.0 0.0

v 3.0 4.00.0

v 6.0 2.00.0

v2.02.00.0

v4.02.00.0

v 1.0 0.0 0.0

v 3.0 0.00.0

f134

f142

f245

f364

fa67

f475

RECORDS OPin diagram to view
Vertex Coordinate Incident edge Face Half-edge

v (1,4,0) € fo €
Vy (3,4,0) es f e
V3 (0,2,0) €1 f €
v (2,2,0) e 5 €
Vs (4,2,0) eg fa €12
Ve (1,0,0 €10 s €15
vy (3,0,0) €14

Fig. 1. The main visualization of our interactive explainer, which shows a half-edge diagram along with the records table stored in
memory for the half-edge data structure. The input mesh is specified in the editor in the upper left, which automatically redraws the

diagram and tables as edits are made.

Abstract—We create an interactive article introducing and exploring half-edge data structures, which are common in the field of
computational geometry, for the purpose of teaching students in an undergraduate geometric modelling course. We visualize the
half-edge data structure in both a table view, which represents the data structure as it is stored in memory, and as a diagram view,
which visualizes the relationships between the half-edges and vertices in the mesh.

Index Terms—Interactive visualization, Interactive explainer, Computational geometry, Mesh, Education, Half-edge data structure,

Winged edge data structure, Doubly connected edge list.

1 INTRODUCTION

Every two years, the University of British Columbia offers an un-
dergraduate course in geometric modelling (CPSC 424). The course
begins with a detailed foray into different ways of modelling curves,
such as Bézier curves, Hermite curves, and B-splines. The course then
moves from 2D to 3D by discussing methods for modelling surfaces
and solids. The course differs from related courses in the mathematics
department in that it explicitly discusses meshes: in particular triangle
meshes, mesh data structures, and mesh algorithms. Meshes are ubiqui-
tous in the field of computer graphics, and have a variety of practical
applications.

Because the course is offered infrequently and comparatively few

e Jerry Yin is with The University of British Columbia. E-mail:
Jerryyin@cs.ubc.ca.

o Jeffrey Goh is with The University of British Columbia. E-mail:
gohzenhao @ gmail.com.

students take the course (due to it being a fourth year course), the notes
for the course can be somewhat sparse. In particular, the course lacks
detailed notes for many topics, and often uses third-party interactive
demos for the first half of the course (see Previous Work section for
examples). However, there are a lack of interactive demos on the
internet for the second half of the course (meshes), and students must
download models and install (and learn) software such as MeshLab or
a 3D modelling application in order to interactively explore some of
these topics.

Recently, there has been an increasing number of interactive online
articles on specific technical subjects (sometimes called “interactive
explainers”), which differ from traditional articles in that static figures
are replaced with interactive visualizations and animations. These
interactive explainers are made possible by the proliferation of modern
web technologies such as SVG and highly optimized JavaScript engines.
For our project, we created a detailed interactive explainer on the subject
of half-edge data structures, a common data structure in the field of
computational geometry. The notes emphasize visual explanations,
choosing to teach via interactivity and visuals wherever possible, rather
than relying mainly on text as in a traditional textbook.

2 RELATED WORK

As mentioned previously, interactive explainer articles are in vogue.
There are online journals which exclusively publish interactive explain-
ers, such as the online machine learning journal Distill [4] and the
digital magazine Parametric Press [9]. These interactive explainers
differ from traditional articles in that they include reactive diagrams
and animations to assist with the text explanations. Reactive diagrams
are diagrams that can be interacted with by the reader, providing a con-
trolled environment in which the reader can experiment with different
parameters of the visualization as part of deepening their understanding
of the topic being explained. Interactive explainers have been popu-
lar enough that Conlen and Heer [2] have created a markup language
specifically for authoring interactive explainers, and have had under-
graduate students use it to create interactive articles as part of a final
course project. Examples of interactive explainers created with Idyll
can be found in their gallery [5]. Our project also uses Idyll.

Many innovative ways to visualize geometry have also been in-
vented over the years. For example, an interactive system has been
implemented to view complex 3D models using exploded views [7].
The diagram of the complex 3D model changes based on the interaction
of users. User interactions included clicking, dragging and rotating. An
iterative algorithm was used in determining how to remove unblocked
parts of the 3D model. The paper serves as a good guideline on creating
and viewing interactive interactive exploded views with 3D models.
Although our project will most likely not use exploded views, it will
be similar to our project as our goal is to create an interactive system
to allow easier understanding of meshes for students. There has been
other work on exploded views over the years [6, 12]. However, our
work focuses on viewing local mesh neighbourhoods in 2D rather than
entire meshes in 3D, as we care more about how meshes are represented
in memory and local topology.

A few interactive articles and demos are already being used in CPSC
424. For instance, an article on Lagrange curves demonstrating Runge’s
phenomenon [3] is shown in lecture. The site allows the user to modify
the control points of a Lagrange curve and also vary its knots. A
plot of the curves and a plot of the Lagrange basis functions for the
user-specified knots are juxtaposed. The same site has many other
interactive articles on splines. Other interactive demos include one on
manipulating Hermite curves [8] and one visualizing the de Casteljau
algorithm (made by Jerry) [13], although these are not articles because
they do not contain any explanation.

The introductory section of our interactive explainer describing the
motivation behind half-edge data structures is based on a CPSC 424
slide deck [10], although we go into more explicit detail in our article.

3 DATA & TASKS

In our reactive diagrams, we plan on using hand-crafted geometric
models that are designed to be instructive and simple enough to be
interactive. The models will be in the form of meshes, which specify
vertex positions and vertex connectivity. The surface of the mesh is
defined by a set of planar faces, whose boundaries are defined by cycles
of vertices connected by edges. Meshes thus fall under the category of
geometric data, but they are also an example of a network, since they
can be represented as vertices connected by edges. However, when
understanding the shape of a model, it is usually not enough to consider
the spatial or topological features of the mesh in isolation—one must
consider both simultaneously.

The meshes are small enough that any changes the user makes to the
mesh can be displayed instantly. For example, our main visualization
starts with a six-sided vertex umbrella, which has seven vertices, twelve
edges, 24 half-edges, and six faces. In a later section, we walk through
the implementation of an edge-flip algorithm, which flips the orientation
of an edge situated in the middle of a cycle of four vertices.

3.1 Half-edge data structures

We have created an article on half-edge data structures. Half-edge
data structures, also known as winged edge data structures or doubly-
connected edge lists, are a common way of representing meshes in

oe

\/

Fig. 2. Visualization of a half-edge %, along with its twin ¢, previous
half-edge p, next half-edge n, origin vertex o, and incident face (shaded
light blue). This exact figure appears in our interactive explainer, and
features an interactive caption. When parts of the caption are hovered
over with the cursor, the relevant parts of the diagram are highlighted in
orange.

memory, since they allow fast, constant-time access to common queries
necessary for implementing most mesh algorithms [1].

For example, consider a mesh with vertices V and faces F' repre-
sented in the following face-list representation:

vi =(1,4), va = (3,4), v3 =(0,2), v4 = (2,2),
V5 = (472)7 Ve = (1,0), V7 = (370)

V= {V],VZ,V3,V47V5,V6,V7}
F={(V17V3,V4),(V17V4.,V2),(V2,V4,VS),(V3,v6,V4),(V4,v67v7),
(va;v7,vs)}

In order to determine whether the vertices v3 and vg are connected by
an edge, one must iterate through the entire face list until one finds (or
fails to find) the desired edge.

A half-edge data structure allows for efficient query operations. In
a half-edge data structure, each edge is represented by a pair of half-
edge twins, with both twins pointing in opposite directions. Faces are
represented as an oriented (usually counter-clockwise with respect to
the viewer) cycle of half-edges. A half-edge data structure stores three
types of records: half-edge records, vertex records, and face records.

A half-edge record represents a single half-edge, and stores a pointer
to its corresponding twin half-edge, as well as the next and previous
half-edges along the same face or hole. A half-edge record also stores
pointers to the vertex and face records corresponding to the origin
vertex and incident face of that half-edge, respectively. Fig. 2 shows a
half-edge in relation to the objects its record points to.

A face record stores a pointer to an arbitrary half-edge incident on
that face, and a vertex record stores a pointer to an arbitrary half-edge
which originates from that vertex.

3.2 Goals

Students must understand both the low-level representation of a half-
edge data structure as a collection of records with pointers as well
as the high-level representation of a half-edge data structure as the
abstract representation of some shape in space. This is because students
need to understand and reason about meshes at a high-level, but also
need to be able to implement mesh algorithms, which requires a deep
understanding of the low-level.
Thus, our goals are for students to understand how to

1. given a mesh specified in a compact representation such as the
face-list format, draw out the half-edge diagram corresponding to
that mesh;

2. given a mesh specified in a compact representation, fill in the
table of half-edge, vertex, and face records corresponding to that
mesh;

3. efficiently perform common queries on a half-edge data structure;
and

4. write algorithms which modity a half-edge data structure without
leaving it in an inconsistent state.

Half-Edge Data Structures

Jerry Yin and Jeffrey Goh
Dec. 10, 2019

We can represent discrete surfaces as pulygon meshes. Polygon meshes can
be thought of as graphs (which have vertices and edges between vertices)

plus a list of faces, where a face is a cycle of edges

Below, we specify a mesh as a list of vertices and a list of faces, where each
face is specified as a cycle of vertices. The edges of the mesh are implied

—edges connect adjacent vertices of a face.

w=(L4 w=(34 wu=(02|w=(22)
n=(42) w=(L,00 u=(3,0)

F

3, 8, v4), (va, ve, v7), (va, vr, v5)}

‘The face-list representation is popular for on-disk storage due to its lack of
redundancy, however it is difficult to write algorithms that operate directly
on such a representation. For example, to determine whether or not v and
w3 are connected, we must iterate through the face list until we find (or fail

to find) the edge we are looking for

A popular data structure which can answer such queries in constant time is
the half-edge data structure. Tn a half-edge data structure, we explicitly store
the edges of the mesh by representing each edge with a pair of directed

half-edge t

5, with each of the two half-edges twins pointing in opposite t
directions. A half-edge stores a reference to its twin, as well as references to n
the previous and next half-edges along the same face or hole. A vertex
stores its position and a reference to an arbitrary half-edge that originates o
fah

from that vertex, and a face stores an arbitrary half-edge belonging to that

face. A half-edge data structure stores arrays of vertex, face, and half-edge

Tecords.

For representing houndary edges (edges adjacent to a hole), we have two
options, We can either represent boundary edges with a single half-edge
whose twin pointer is null, or we can represent boundary edges as a pair of
‘half-edges, with the half-edge adjacent to the hole having a null face
pointer. It turns out the latter design choice results in much simpler code,
since we will soon see that getting a half-edge’s twin is a far more common
operation than getting a half-edge's face, and being able to simply assume

that we have a non-null twin results in far fewer special cases.

Below, we show the half-edge diagram and records table for a more complex

mesh. The mesh vertices and connectivity can be edited in the editor.

Fig. 4. The view the reader is greeted with when the article loads.

4 SOLUTION

Our article begins with a description of the motivation behind half-edge
data structures, and why they are preferred over face-lists when used
to implement geometry processing algorithms. Fig. 4 shows the view
that the reader is presented with when they load the article in their web
browser.

The design of the article mimics the design of the existing tutorial
notes written by Jerry, which are in turn based on the design of Edward
Tufte handouts.

4.1 Main visualization

For our main half-edge data structure visualization, we implemented
the visualization shown in Fig. 1 and Fig. 3. This visualization is
intended to fulfill goals 1 and 2 listed in Sect. 3.2. The editor in the
top left, inspired by the live-reloading JPEG editor in “Unravelling the
JPEG” [11], displays the contents of a mesh in the simple and popular
OBJ text format. The user can edit the contents of the OBJ file, and the
half-edge diagram (top right) and memory layout tables (bottom) will
update in real-time.

The half-edge diagram in the top right shows the mesh laid out in
2D. The idea of representing half-edge twins as parallel arrows is not
new; most discussions of half-edges use similar encodings to depict
the structure. The marks in our diagram are coloured based on type:
boundary half-edges are coloured blue, interior half-edges are coloured
red, faces are coloured teal, and vertices are coloured black. In addition,

vertices, half-edges, and faces are labelled based on their names in the
memory layout table. The positions of the vertices are determined by
the positions specified in the editor.

If the user hovers their cursor over any vertex, edge, or face in either
the half-edge diagram or the memory layout table, the same item is
highlighted in all other places it appears. This highlighting makes the
structure of the half-edge data structure more apparent: for example, by
hovering over a half-edge in the “Twin” column, it becomes apparent
that the twin of a half-edge’s twin is the original half-edge.

4.2 Margin figure

In the introduction of our interactive explainer, we include a small
margin figure with an interactive caption. See the caption of Fig. 2 for a
description of how it works. Since we created an interactive explainer,
it is important for figures to be well-integrated with the text.

4.3 Steppers

In order to achieve goal 3, our article has two sections on how to
perform queries efficiently. One is on how to find all of the half-edges
incident on a face (remember that a face record only stores a pointer
to a single, arbitrary incident half-edge), and the other is on how to
find all of the half-edges originating from a given vertex, also known
as the spokes of the vertex umbrella. In the article text, pseudo-code
implementations of these iterators are given.

Our visualizations in these sections consist of a diagram portraying a
local neighbourhood of a mesh, and a button which the reader can press
to move on to the next iteration of the loop. We use the same visual
encodings as the half-edge diagram in the main visualization. The
half-edge in the current iteration is highlighted, so for the visualizations
in this section, we disable hover highlighting, which would be useless
anyway since we do not display the records table in this section. After
pressing the button, an animation will play which shows the pointer
indirections which are followed in order to proceed to the next iteration
of the loop. The reader can press the button repeatedly to iterate over
the loop.

Our local neighbourhood in the vertex umbrella case is carefully
chosen to include both non-triangular faces and boundary half-edges,
in order to show that our iterators are robust to these cases.

4.4 Consistency checker

In the last section of our article, we walk through how to modify a half-
edge data structure, which achieves goal 4. Modifying a half-edge data
structure usually involves corrupting it, and then uncorrupting it through
a series of operations. The article walks through a concrete example of
implementing an edge flip operation, which flips the orientation of an
edge in the middle of a cycle of four vertices.

In the visualizations in this section, we re-enable linked highlighting,
and we display the half-edge diagram and records table side-by-side.
The article intersperses pseudo-code with visualizations of the mesh
at each state of the visualization. We also highlight newly modified
cells in the records table light blue. In the second-last visualization, we
must visualize the mesh whilst it is in an inconsistent state. We outline
the inconsistent cells in the records table in red, which also serves to
remind us which cells need to be made consistent in the algorithm
implementation. Fig. 6 shows such a view.

5 IMPLEMENTATION

Our half-edge article is created using the Idyll markup language [2].
The content of the article is written in a Markdown-like format, which
is then converted into a single HTML page by the Idyll compiler. The
half-edge diagram is drawn using SVG elements, whose structure is
created using the D3 library. Idyll allows the author to create custom
interactive components by writing React components in JavaScript,
and then embed them in the document using a special syntax. We
implemented all of our components and interactivity using React. We
did not use any of the built-in components or stylesheets that come
with Idyll. We based our half-edge data structure implementation
loosely on a stripped-down version of the implementation provided
with Assignment 7 of CPSC 424, with our main modification being that

v B8.91.086.0
v1.81.088.@
v 8.0 8.0 8.0
v1.8008.086.0
f134
f142
RECORDS [JPin diagram to view
Vertex Coordinate Incident edge Face Half-edge
v (0.1,0) ey fo €
vy (1, 1,0) es fi e
vy (0,0, 0) e
Vg (1,0, 0) €
Half-edge Origin Twin Incident face Next Prev
€p ¢! € fo ! 7
€ V3 € fo e e
€ Vi €3 fo € €
L Vi [L2 fi €4 &5
A vy e f 5 e
& Va € h € g
€ vy € @ e I
& vy & @ I ey
e Uy ey @ e ey
€ W e @ eg €

Fig. 3. Visualization of a small mesh, with the half-edge corresponding to the cell under the cursor highlighted in both the records table and the
half-edge diagram.

RECORDS
Vertex =~ Coordinate Incident edge Face Half-edge
el
0 @ v 0,1,0 € fo €
~
e13 vz (11,0 e h e
/ » ©,0,0) “
e €10 vy (1,0,0) e
€ eq
@ Half-edge ~ Origin Twin Incidentface = Next Prev
f & v L3 fo €
o
° f e s e fo e €
3
E 2
er e e e ¢ " o B £l :
€1 €3 e14 e15 e18’ e19 e Vs e A e)
ey €
e vy e h & e
e vy ey f e e
— e v 3 2} e e
e
8 €7 vy € 14 € e
he = he.next he = he.prev.twin Start from a random edge e " e ® e o
e vi e 14 e €

Fig. 5. Left: Face iterator visualization, with half-edge at the current itera-
tion highlighted in orange. Right: Vertex umbrella iterator visualization, Fig. 6. Visualization of an inconsistent half-edge data structure. Newly
with half-edge at the current iteration highlighted. modified cells are in light blue, and inconsistent cells are outlined in red.

we support non-triangular faces and non-closed (open) meshes. We
also used their 3D vector class.

The main component was the most challenging to implement. The
half-edge diagram had to be drawn from scratch. The linked highlight-
ing was difficult to implement due to the difficulty of determining which
object was being moused over and propagating that information to all
the other components as well as updating the display. The difficulty
of understanding the enter-exit-update model of D3 was also the cause
of many subtle bugs which popped up while we were implementing
the article. Label and half-edge placement was also difficult, since the
drawing of the faces needs to be consistently oriented throughout the
entire mesh.

During the writing of the article, we also ran into many issues with
Idyll’s lexer. Despite seeming very Markdown-like, Idyll’s parser dif-
fers greatly from a standard Markdown implementation, with even
things like whether or not a paragraph is ended with terminating punc-
tuation affecting the structure of the output HTML. In the end, to deal
with some corner cases, we had to implement a custom Idyll component
which accepts input in the form of an HTML string and outputs HTML
corresponding to that string. This is a standard feature of Markdown
due to Markdown being a superset of HTML, but is not supported
natively in Idyll.

Table 1 breaks down the split of the work done for the project.

Task Jerry (%) Jeff (%)
Project proposal 80 20
Records table component 20 80
Records table highlighting 0 100
Half-edge diagram highlighting 0 100
Half-edge diagram labels 0 100
Half-edge diagram layout 90 10
OBJ editor component 100 0
Article text 100 0
Supplementary vis (margin figure, steppers, 100 0
consistency checker)

Last minute polish, refactoring, bug fixes, an- 75 25
imations

Peer review & presentation slides 80 20
Presentation 100 0
Final report 60 40

Table 1: Work breakdown.

6 EVALUATION

Upon being posted to the CPSC 424 Piazza discussion board, students
responded with positive comments. One student was intrigued by the
technology behind the implementation, and wanted to know more about
Idyll.

7 DiscussiONs & FUTURE WORK

Our main visualization draws a half-edge diagram in 2D, essentially
projecting the mesh onto the XY plane by ignoring the Z component
specified in the mesh. We felt justified in doing this in part because
half-edge data structures generalize to the 3D case without any special
considerations, and 3D diagrams suffer from visualization problems
such as occlusion and crowding. Another reason for visualizing half-
edge diagrams in 2D is that none of our explanations require the reader
to consider more than a single vertex umbrella, and vertex umbrellas
are almost always topologically planar. Few algorithms need to operate
on more than a small number of half-edge umbrellas at once, thus we
do not believe that a 3D half-edge diagram would be more insightful.
However, our projection of the mesh into 2D space could be made more
intelligent by finding the optimal projection onto a plane instead of
using a fixed projection.

One weakness of our main visualization is scalability. As the number
of faces in the mesh increases, the records table can get quite large—
a mesh with n faces has at least 3n half-edges. Although a pinning
function which keeps the half-edge diagram pinned to the top half of
the browser window was implemented, this does not fix the problem

where the user wants to look at two different rows of the half-edge table
at once when both rows do not fit on screen simultaneously.

The highlighting could also be made more sophisticated. Instead
of merely highlighting the component under the cursor, we could also
have implemented automatic highlighting of related components as
well. For example, if the user hovers over a half-edge, the hovered half-
edge’s twin, previous, and next half-edges could also be highlighted in
the table in different colours. This could make the symmetries between
relations even more apparent.

Another improvement that can be made is to implement editable
code and tables. Rather than have the steppers implement a static code
snippet, an interactive editor can be added so that students can figure out
the correct algorithm by themselves. As for the records table, instead
of limiting interaction to highlighting, the table can be made editable
to allow students to corrupt and then repair the mesh. Should these
features be implemented, a reset button that resets the editor, diagram
and code snippets back to their initial states would be also be a useful
feature.

Due to time constraints and the complexity of implementing the
half-edge visualization, only one article was completed for the entire
duration of this project. We were not able to implement a second
article on mesh subdivision as stated in our initial project proposal. We
decided to produce a single high quality article rather than two articles
with buggy interactions. One thing we underestimated was that every
new figure required some modifications of the existing components in
order to address some concept discussed in the text. Instead of trying
to create a single visualization which tries to address every use case
beforehand, we would have been able to architect our components
better if we had written the article text at the same time as we created
the visualizations, instead of writing all of the article text at the end.

If we had more time, we would want to create more articles on
geometry processing topics, such as mesh subdivision, simplification,
and parameterization. We believe that an entire interactive textbook on
computational geometry would be helpful to educators and students
everywhere.

8 CONCLUSION

We created an article exploring half-edge data structures through in-
teractive visualizations, with the purpose of teaching students in an
undergraduate geometric modelling course. We implemented a 2D
half-edge diagram with linked highlighting between the diagram and
records tables, with the intent of bridging the gap between high-level
and low-level representations of half-edge data structures. The re-
sponses received from the students were positive and suggested that the
interactive explainer was helpful.

REFERENCES

[1] B. G. Baumgart. Winged edge polyhedron representation. Technical
report, Stanford Dept. of CS, 1972.

[2] M. Conlen and J. Heer. Idyll: A markup language for authoring and
publishing interactive articles on the web. In ACM User Interface Software
& Technology (UIST), pp. 977-989, 2018.

[3] E. Demidov. Interpolating Lagrange curve. https://web.archive.

org/web/20191104080854/https://www.ibiblio.org/e-notes/

Splines/lagrange.html, 2001.

Distill: Latest articles about machine learning. https://distill.pub.

Accessed: 2019-11-01.

Idyll example gallery. https://idyll-lang.org/gallery. Accessed:

2019-11-01.

[6] O. Karpenko, W. Li, N. Mitra, and M. Agrawala. Exploded view dia-

grams of mathematical surfaces. IEEE Transactions on Visualization and

Computer Graphics, 16(6):1311-1318, 2010.

W. Li, M. Agrawala, B. Curless, and D. Salesin. Automated generation of

interactive 3D exploded view diagrams. In ACM SIGGRAPH 2008 Papers,

SIGGRAPH 08, pp. 101:1-101:7, 2008. doi: 10.1145/1399504.1360700

[8] Lior. General cubic hermite spline demo. https://codepen.io/

liorda/full/KrvBwr. Accessed: 2019-11-03.

Parametric Press. https://parametric.press/issue-01/. Ac-

cessed: 2019-12-10.

[4

=

[5

—

[7

—

[9

—

http://idl.cs.washington.edu/papers/idyll
http://idl.cs.washington.edu/papers/idyll
http://idl.cs.washington.edu/papers/idyll
http://idl.cs.washington.edu/papers/idyll
http://idl.cs.washington.edu/papers/idyll
http://idl.cs.washington.edu/papers/idyll
http://idl.cs.washington.edu/papers/idyll
https://web.archive.org/web/20191104080854/https://www.ibiblio.org/e-notes/Splines/lagrange.html
https://web.archive.org/web/20191104080854/https://www.ibiblio.org/e-notes/Splines/lagrange.html
https://web.archive.org/web/20191104080854/https://www.ibiblio.org/e-notes/Splines/lagrange.html
https://distill.pub
https://idyll-lang.org/gallery
https://doi.org/10.1145/1399504.1360700
https://doi.org/10.1145/1399504.1360700
https://doi.org/10.1145/1399504.1360700
https://doi.org/10.1145/1399504.1360700
https://doi.org/10.1145/1399504.1360700
https://doi.org/10.1145/1399504.1360700
https://doi.org/10.1145/1399504.1360700
https://doi.org/10.1145/1399504.1360700
https://codepen.io/liorda/full/KrvBwr
https://codepen.io/liorda/full/KrvBwr
https://parametric.press/issue-01/

[10] A. Sheffer. Meshes - data structures. https://www.students.
cs.ubc.ca/~cs-424/Slides/13_MesheDataStructures.pdf. Ac-
cessed: 2019-12-12.

[11] O. Shehata and M. Conlen. Unravelling the JPEG. Parametric Press,
2019.

[12] J.J. van Wijk. Unfolding the earth: Myriahedral projections. The Carto-
graphic Journal, 45(1):32-42, 2008. doi: 10.1179/000870408X276594

[13] J. Yin. De Casteljau’s algorithm. https://www.desmos.com/
calculator/s78usaowv9. Accessed: 2019-11-03.

https://www.students.cs.ubc.ca/~cs-424/Slides/13_MesheDataStructures.pdf
https://www.students.cs.ubc.ca/~cs-424/Slides/13_MesheDataStructures.pdf
https://web.archive.org/web/20191104092906/https://parametric.press/issue-01/unraveling-the-jpeg/
https://web.archive.org/web/20191104092906/https://parametric.press/issue-01/unraveling-the-jpeg/
https://web.archive.org/web/20191104092906/https://parametric.press/issue-01/unraveling-the-jpeg/
https://web.archive.org/web/20191104092906/https://parametric.press/issue-01/unraveling-the-jpeg/
https://doi.org/10.1179/000870408X276594
https://doi.org/10.1179/000870408X276594
https://doi.org/10.1179/000870408X276594
https://doi.org/10.1179/000870408X276594
https://doi.org/10.1179/000870408X276594
https://doi.org/10.1179/000870408X276594
https://doi.org/10.1179/000870408X276594
https://www.desmos.com/calculator/s78usaowv9
https://www.desmos.com/calculator/s78usaowv9

	Introduction
	Related Work
	Data & Tasks
	Half-edge data structures
	Goals

	Solution
	Main visualization
	Margin figure
	Steppers
	Consistency checker

	Implementation
	Evaluation
	Discussions & Future Work
	Conclusion

