Interactive
Explainers for
Geometry
Processing
Algorithms

Jerry Yin and Jeffrey Goh

What are interactive explainers?

Recent trend of interactive online
articles on technical subjects
Interactive visualizations and
animations replace traditional
static figures

Online journals Distill (for ML) and
Parametric Press are examples
Made possible by modern web

technologies

RBF KERNEL PERIODIC LINEAR

0'2exp (_%) O'Zexp (_w) U£+a.2(t_c)(tl_c)

.I L} L} a

'''''''''''''

n L] L] L]
l. - L ..I .l
g e Ty .I -.I

Varianceo = 0.8 Varancea = 0.8 Varancec = 0.3
Length | =08 Length | =08 Varianceag_b = 0.8
Periodicity p = 0.5 Offset ¢ =0

This figure shows various kernels that can be used with Gaussian processes. Each kernel has different parameters, which
can be changed by adjusting the according sliders. When grabbing a slider, information on how the current parameter
influences the kernel will be shown on the right.

Interactive figure from “A Visual Exploration
of Gaussian Processes” by Gortler et al,

published in Distill. ,

https://distill.pub/2019/visual-exploration-gaussian-processes/
https://distill.pub/2019/visual-exploration-gaussian-processes/

What are interactive explainers?

Recent trend of interactive online

articles on technical subjects

JPEG Editor Size: 79.21 kb. Dimensions: 700 x 437

Interactive visualizations and
animations replace traditional
static figures

Online journals Distill (for ML) and

Parametric Press are examples

Made possible bv modern web Interactive figure from “Unraveling the JPEG”
p y by Omar Shehata, published in Parametric Press.

technologies

https://parametric.press/issue-01/unraveling-the-jpeg/

Why geometry?

e Geometry is a visual subject; creating
visualizations for it makes sense.

e The undergraduate geometric modeling
course (CPSC 424) could benefit from nicer
notes.

e We created an article on half-edge data

structures.

Implementation

Used the Idyll markup language to
create explainer

Write article in Markdown-like
syntax, and implement
visualizations as React
components 1n JavaScript

Used D3 for visualizations

Idyll converts markup to single
HTML page

Half-Edge Data Structures

Jerry Yin and Jeffrey Goh
Dec. 10, 2019

We can represent discrete surfaces as polygon meshes, Polygon meshes can
be thought of as graphs (which have vertices and edges between vertices)
plus 2 list of faces, where a face is a cycle of edges.

Below, we specify & mesh ag a list of vertices and a list of faces, where each
face is specified as a cycle of vertices. The edges of the mesh are implied
—edges connect adjacent vertices of a face.

v =(L4)
v = (4,2)

vy = (3,4)
vg = (1,0)

v3 = (0,2)
v =(3,0)

ve=(2,2)

V = {11, vg, v3, Vs, U5, Vs, tr}

F = {(1n, v, va), (01,2, v2), (v2, v, vs), (13, vs, 1), (2, 06, v7), (ve, v7, v5) }

The face-list rep ion is popular for on-disk storage due to its lack of
redundancy, however it is difficult to write algorithms that operate directly
onsucha ion. For le, to d ine whether or not ¥ and

3

T
3 are connected, we must iterate through the face list until we find (or fail
to find) the edge we are looking for.

A popular data structure which can answer such queries in constant time is os

the half-edge data structure. In a half-edge data structure, we explicitly store \
the edges of the mesh by representing each edge with a pair of directed P

half-edye twins, with each of the two half-edges twins pointing in opposite tfh .
directions. A half-edge stores a reference to its twin, as well as references to n

the previous and next half-edges along the same face or hole. A vertex

stares its position and a reference to an arbitrary half-edge that criginates e

from that vertex, and a face stores an arbitrary half-edge belonging to that
face. A half-edge data structure stores arrays of vertex, face, and half-edge

records. stores references ta its origin vertex and ingi-

Visualization of 2 half-edge &, along with its

For rey ing boundary edges (edges adjacent to a hole), we have twa
options. We can either represent boundary edges with a single half-edge

wnrhass tirrin naintar ic mull ar s can ronvacant hatmdarer admac ae 2 nair af

Meshes

e Meshes are graphs with vertices and edges, plus a set of faces.

e Each face is a cycle of vertices.

e Representing faces as a set of cycles is compact (good for storage) but
bad for mesh algorithms.

o Asking questions like “are v, and v, connected?” requires

3

searching through
v1 = (1,4) v2 = (3,4) vs = (2,2)

all the faces! vi=(4,2) wvs=(1,0) v=(3,0)

V= {’01, V2, V3, V4, Vs, ’Uﬁ}

F = {(v1,v3,v2), (va2, v3,v4), (v1,V5,v3), (vs3, V5, V6, v4) }
6
S

Half-edge data structures

Represent each edge as a pair of half-
edges, each going in opposite directions.
Each face is represented by a counter-
clockwise cycle of half-edges.

Boundary is represented by a clockwise
cycle of half-edges.

Each half-edge stores next and previous
half-edges, its twin, its origin vertex, and
its corresponding face.

o (Can answer most common queries

1In ~constant time. F=

W5
V1= (1,4) (3>4) Vs = (272)
= (4,2) vg:=11,0) v = (3,0)

V = {v1,va, v3,v4,v5,v6 }

{(’01,’03, 1)2), ('U2, U3, ’04), (vla Vs, ’U3), ('03) Us, Ug, ’1)47)}

Half-edge vis

e Shows high-level (diagram) /"W"\
and low-level (records table) & N/ N
representations of a mesh s \f / \ /

e Students need to understand 9
both: think about algorithms R e T e Dm

.40 ;

at high level, but implement : ES E

algorithms at the low level Eg ;
:

Half-edge vis

e OB]J Editor view allows user to /\:)/\
edit a mesh defined in the & f 2 4 M 2 Y
popular OB]J format. 4F \f / \ //

o Specify positions and °——0
connectivity e omtm | i e
e Visual view shows a half-edge Re ;
= ;
diagram. ; o ;
o Colour encodes boundary :au:dge)) e s e
;

/ interior half-edge

Half-edge vis

our mesh definition in O0BJ format below...

Records layout view shows all
the records stored in the data
structure. H

o Colours are the same as

RECORDS

in the half-edge diagram. ==
Linked highlighting :

Half-edge

Coordinate

(1,4,0)
(3,4,0)
0,2,0)
(2,2,0)
(4,2,0)
(1,0,0)
(30,0

Origin

€19
O——0
€5
fi
€18 €3 € €20
€ € € es
fo £
€ & €y =
0= Q- ©
eny e17
5 5
€ €10, €15 €16,
e ez €14 e
h
o
-~ 0
ez

g

| [5 | 50 | 8
o

Incident face

[CJPin diagram to view

Half-edge

10

Half-edge vis

e Faces only need to store one s

€11

half-edge to get all the other e e10

€0 €4

half-edges and vertices
incident on that face. (3] fo o

e Stepper shows how to
e1 €3

algorithmically traverse the er e

face. e

5 =)
|

€3

~he = he.next

11

Half-edge vis

e Similarly, vertices only need
to store one half-edge going
out of it.

e Stepper shows how to

algorithmically traverse the
vertex umbrella.

he = he.prev.twin | Start from a random edge |

Half-edge vis

. RECORDS
e Last section walks
Vertex Coordinate = Incident edge Face Half-edge
through how to modify e oo
@ vy (1,1,0) es f s
(0, 0, 0) e
a half-edge data . | 51 S
S tru C tur e Half-edge Origin Twin Incident face = Next Prev
€ Vi € fo e e |
e Visualizes how the R e e T o
mesh becomes — e . e
. . . es Va f €3 €y
inconsistent during the . — . I— S
. . € Vy e ()} € ey
modification process, = . 1 2 S
eg Vi es (7)) eg (3
then is fixed to become
consistent
13

Thank you!

@ www.students.cs.ubc.ca/~cs-424/tutorials/half-edge

O github.com/enjmiah/interactive-geometry

14

http://github.com/enjmiah/interactive-geometry
http://www.students.cs.ubc.ca/~cs-424/tutorials/half-edge

