Radial Visualization of Multidimensional and Multivariate Data

Gabriel Zhou

MULTIDIMENSIONAL/MULTIVARIATE

Think of data as a sample from k-variate function F(x) defined over an n-dimensional domain D. Thus F = (f₁, f₂, ..., f_k) has k components, and X = (x₁, x₂, ..., x_n) is a point in D. We shall allow k to be zero, in which case we just have a point in D, and we allow n to be zero, in which case we just have a value of F. We shall talk in terms of dependent variables F and independent variables X. In this case, X represents multidimensional data and F represents multivariate data.

MULTIDIMENSIONAL/MULTIVARIATE

- Key attributes and value attributes
- Key attributes act as index to look up value attributes
- Multidimensional multiple key attributes
- Multivariate multiple value attributes

RADIAL VISUALIZATION

- Radial Visualization: information is rendered in a circular or elliptical fashion
- "Radial Visualization" was first mentioned by Hoffman in 1997
- Earliest use of radial display: pie chart by William Playfair in 1801
- Florence Nightingale in 1850s: polar area chart

Radar Chart

- A series of spokes or rays projecting from the center point, with each ray representing a different attribute
- The value of the variables are encoded with the lengths of the rays, the values so plotted are sometimes connected to form an enclosed figure
- Dominant perceptual properties often include size and shape of resulting figure
- Parallel coordinates in a radial layout

Radar Chart Limitation

- Scalability issue (just like parallel coordinates)
- Comparison across axes
- Misleading to cross-axes comparison when its meaningless
- Size and shape depend on axis sorting

RadViz

- 1997 by Hoffman
- N-dimensional data points are laid out as points equally spaced around the perimeter of a circle
- Imaginary springs (invisible) connecting perimeter points and the data point
- Spring constant of each spring equals to the value of the data in that coordinate
- All data points values are usually normalized to have values between o and 1

$\mathbf{x} = (0.5, 0.25, 0, 0.25, 0.5, 1)$

RadViz

RadViz Limitations

- All dimensional points with difference by a scale number that map into the same position, all points separated on the original space cannot distinguished on the visual space
- Ordering of dimensional anchors is vital, difficult to find the optimal order for a good visualization view

Star Coordinates

- An extension of typical scatterplots to higher dimensions
- Arrange the coordinate axes on a circle with equal angles and equal length (initially)
- The mapping of a data element is determined by the sum of all unit vectors on each coordinate multiplied by the value of the data element for that coordinate

Star Coordinates Limitations

- Ambiguity (similar issue as RadViz)
- Can be solved (reduced) by interactions
- Scaling:
 - changing the length of axes
 - Increase or decrease the contribution of a particular axis on the resultant visualization
- Rotation:
 - changing the direction of axes
 - Changing the correlations of a particular data axis to other axes

Circle Segment

- Pixel per value technique
- Display the data dimensions as segments of a circle
- The data items within one segment are arranged in back and forth manner along "draw line"
- Coloring maps high data values to light colors and low data value to dark colors

Circle Segment Limitations

 Outer data may receive undue emphasis due to their greater radius (arc length is derived directly from the radius)

