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Abstract— Visualizing multidimensional/multivariate data is essential but can also challenging. Among all the techniques that can 

be applied to visualize these high dimensional data, radial visualization turns out to be an interesting approach. By mapping data in 

a circular pattern, radial visualization takes advantage of the unique characteristics of a circle. We classify multidimensional/ 

multivariate radial visualization techniques into two major categories: axis-based and segment-based. For axis-based visualization, 

data attributes are assigned to the axes of the circle. For segment-based visualization, data attributes are assigned to the segments 

of the circle. We put techniques that are hard to fit in these two categories into the “others” category. By surveying papers related to 

this topic, we prove the validity and effectiveness of radial visualization as a distinct set of techniques to present multidimensional/ 

multivariate data. 

Index Terms—Multivariate visualization, visualizaition techniques and methodologies, radial visualization

 

1 INTRODUCTION  

With the rapid development of computing and sensing technologies, 

the available number of data continuously grows. Observation of 

data can have more than one outcome variable, and such data is 

referred to as multidimensional/multivariate data. These data appear 

in various scientific fields including chemistry, biology, engineering, 

etc. Studying and analyzing these multidimensional/multivariate data 

are essential to answer domain questions and make research 

progresses. Visualization helps with data analysis by presenting data 

in a graphical form to improve understanding. However, high 

dimensional visualization has always been a big challenge. The 

current solutions contain some dimensionality reduction algorithms 

(e.g. PCA or t-SNE) and direct multidimensional/multivariate data 

visualization techniques (e.g. Parallel Coordinates or Scatterplot 

Matrix). 

Radial visualization is a prevalent methodology that displays data 

in a circular pattern. Radial visualization can be essentially 

considered a circle, and it shares the unique and interesting 

characteristics of a circle. Giving a point at any position in a radial 

layout, that location can be represented with an angle and a radius, 

which can be further considered as a length. Length along with 

position are ranked at the top among all visualization channels, and 

the angle channel is placed right after the length channel. Therefore, 

when using a radial layout, we are naturally applying two most 

reliable visualization channels in one system. Another important 

characteristic of a circle is the inherent periodicity. There is no 

defined starting or end point in a circle, any point on the circle 

circumference can go around in either direction and back at its initial 

position. The inherent periodicity of a circle is a huge advantage 

when presenting periodic data (e.g. time referenced data). Moreover, 

circle is a compact shape. For the same perimeter, circle is proved to 

have the largest area. Its compactness also reflects on how data are 

distributed in the layout. Many other visualization layouts restrict 

mapping data in certain directions. However, in a radial layout, data 

are usually separated out in every direction and fill the whole canvas. 

These characteristics make the radial visualization one of the most 

flexible visualization methods out there. 

We are interested in the feasibility and effeteness of using radial 

visualization as a possible solution to present multidimensional/ 

multivariate data. In this survey paper, we go through several 

visualization papers that focus on applications of radial visualization 

techniques on multidimensional/multivariate data. The contents 

include origins and designs of these radial visualization techniques, 

limitations and improvements on these original techniques, 

comparison between different techniques, and case studies that apply 

them in real-world problems. In Section 2, we explain some 

important terminologies. Section 3 discusses related works with 

previous survey papers on radial visualization or 

multidimensional/multivariate data visualization. We divide all radial 

visualization techniques into two major types: axis-based and 

segment-based. Each is named after the way data attributes are 

assigned in a circle, either to the axes or to the segments. Section 3 

includes three axis-based radial visualization techniques. They are 

Radar Chart, RadViz, and Star Coordinates. Section 4 includes two 

segment-based radial visualization techniques, which are Circle 

Segments and Circle View. Some techniques cannot be simply 

classified into these two categories and we present them in Section 5 

as “others”. 

2 TERMINOLOGY  

2.1 Radial Visualization 

Defined by Draper et al. in their survey paper [1]: 

“radial visualization describes any interactive system that 

arranges data in a circular fashion.” 

In this given definition, radial visualization represents an 

interactive system by default. This holds to be accurate as all radial 

visualization techniques discussed in this paper provide certain 

interactions. On the other hand, a traditional non-interactive radial 

layout is referred to as a radial display. The simplest radial 

visualization can be a pie chart. When a visualization idiom is 

arranged into a radial layout, it can also be seen as an application of 

radial visualization. For example, using a radial node-link diagram to 

present a tree. Radial visualization is a widely used methodology in 

information visualization. 

2.2 Multidimensional/Multivariate Data  

The terms multidimensional and multivariate are often used vaguely 

in visualization papers. Despite being the common terms, the 

definitions and differences between these two often remain 

clarifications. A formal definition proposed by Santos and Brodlie 

[2]: 

“Think of data as a sample from k-variate function F(x) defined 

over an n-dimensional domain D. Thus F = (f1, f2, …, fk) has k 

components, and X = (x1, x2, …, xn) is a point in D. We shall allow k 
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to be zero, in which case we just have a point in D, and we allow n to 

be zero, in which case we just have a value of F. We shall talk in 

terms of dependent variables F and independent variables X.” 

 In this case, data with multiple independent variables X is called 

multidimensional data and data with multiple dependent variables F 

is called multivariate data. Although being very exact and rigorous, 

this definition may seem to be less intuitive and comprehensible. 

Munzner describes the two terms in her book [3] with respect to key 

attributes and value attributes: 

For a table dataset, a key attribute acts as an index to lookup 

value attributes. “Multidimensional” refers to multiple key 

attributes, and “multivariate” refers to multiple value attributes. 

This definition is easier for readers to understand. It is also worth 

to mention that a dataset can be multidimensional and multivariate at 

the same time. Visualization papers use attributes, dimensions, and 

variables these three terms interchangeably. When the term 

“multidimensional data” is mentioned, it is usually referred to as 

multivariate data rather than the “actual” multidimensional data we 

described above. In this survey paper, we focus on using radial 

visualization to present multivariate data. Multidimensional data is 

used as a synonym of multivariate data in the following sections. 

3 RELATIVE WORK 

Despite the term radial visualization had been mentioned as early as 

in 1997 by Hoffman et al. [4] and became increasingly popular 

around the early 21st century, it was not considered as a distinct 

methodology of its own. Until in 2009, Draper et al. [1] presented 

their survey work on radial visualization, and this idea had finally 

brought up in front of people. Their contributions are majorly from 

three perspectives. First, they identified different problems that radial 

visualization had applied. Second, they proposed seven design 

patterns for the radial visualization system at that time. Third, they 

came up with five design choices for designers to consider when 

creating new radial visualization systems. Draper’s work was a 

significant milestone on the road of radial visualization. It drew 

people’s attention to this rising visualization technique, elevated it 

from an interesting visual gimmick to a unique methodology. 

Moreover, the taxonomy presented in this paper built a solid 

foundation for further research. As we talk about the various radial 

visualization techniques in later sections, we will use these well-

defined patterns as references.  

Table 1: Design Patterns for Radial Visualization [1] 

 Pattern 

Polar Plot 
Tree 

Star 

Space Filling 

Concentric 

Spiral 

Euler 

Ring 
Connected Ring 

Disconnected Ring 

 

Although Draper et al. did a great job of summarizing the status 

of radial visualization at that time, one decade has passed and radial 

visualization has become a sophisticated visualization metaphor. The 

scope of its applications on various domain problems has 

undoubtedly grown as well. Moreover, Draper’s work presented a 

very general overview and guideline about radial visualization, while 

we would narrow down the coverage and focus on the performance 

of radial visualization in multivariate data, a topic few have studied. 

On the other hand, visualizing multivariate data has always been 

a hard challenge for data scientists and visualization designers. 

Enormous researches and papers were presented to overcome this 

difficulty. A few comprehensive survey papers have concluded the 

current techniques for multidimensional/multivariate data 

visualization. He et al. proposed a survey of visualization of 

multivariate spatial data [5], focused on a certain type of multivariate 

data rather than the type of visualization. Maalej et al. introduced 

various visualization techniques as valid solutions to 

multidimensional data [6]. Radial visualization is only briefly 

mentioned in this overview without an in-depth exploration. Chan 

and dos Santos conducted highly comprehensive surveys on 

multidimensional/multivariate data visualization [7] [8], respectively. 

Again, with full coverage on this topic, they did not present 

applications of radial visualization in detail. Also, they did not 

consider radial visualization as a separate class of techniques for 

multidimensional/multivariate data visualization. 

4 AXIS-BASED  

4.1.1 Radar Chart 

Radar Chart (RC) is also known as web chart, spider chart, star chart, 

star plot, cobweb chart, irregular polygon, polar chart, or Kiviat 

diagram. The first appearance of RC can go way back to 1877 in 

Mayr’s book “Die Gesetzmäßigkeit im Gesellschaftsleben” written 

in German. However, the formal concept and conventions about this 

technique were proposed by Kolence in 1973 [9]. With some minor 

differences in how the graph is encoded, the general idea of this 

technique is the same. RC consists of a series of spokes projecting 

from the center point, with each spoke representing one of the 

variables. The value of each variable is encoded with the length of 

each spoke. The plotted values are connected to form an enclosed 

figure. In this case, RC is equivalent to the parallel coordinates, with 

axes spaced radially and originated at a single point. In a RC, usually 

the size and shape of the resulting polygons are interested. 

Being the sibling of the parallel coordinates, RC shares some bad 

genes. One significant limitation of RC is its scalability, with 

multivariate datasets of more than a few hundred items, the plot can 

become overwhelming. That is only the case RC is plotted the same 

way as the parallel chart. In other implementations, the enclosed 

polygons are color coded to emphasize the resulting size and shape 

(also called Filled Radar Chart). The color may or may not be 

transparent, but in either case, its scalability issue is more severe and 

significantly reduces its effectiveness. 

Comparing the values of data from one single axis in a RC is 

pretty straightforward, but comparing values across different axes is 

less intuitive. This is because it is harder to judge the length in a 

radial layout than in a rectilinear layout, in which case using a line 

graph or bar chart would be more preferred. A solution to this 

problem is to use guidelines or gridlines to help with cross-axes 

comparison. However, in many cases, comparison across axes in a 

RC is meaningless in the first place, as variables on axes are 

nominally independent with different scales. In these cases, although 

the problem with cross-axes comparison is automatically resolved 

since there is no point for comparison at all, another problem arises 

at the same time. RC may mislead people to compare these variables 

naturally, such comparison may cause confusion and false 

conclusions [10].  

Sorting of axes has a significant impact on the shape of the 

enclosed figure. Since size and area is usually the primary factor in a 

RC, sorting of axes can further affect people’s judgement. When data 

is presented as a thin and narrow shape, it becomes difficult and 

misleading to compare with another relative full shape. Although 

Leary et al. remarked “a well-performing unit is always likely to 

have a larger area than a less well-performed unit” [11], Feldman 

[12] argued against it with his example as shown in Fig. 1. Another 

issue related to the project area is its nonlinearity. The area of the 

enclosed shape in a RC is proportional to the square of the values, 

meaning a change in values results in a greater change in the area. 

One could very possibly exaggerate the significance of a change in 

values by observing the resulted change in the area. 



 

Fig. 1. Two filled radar charts with measures on different axis [12]. The 
area in red is reduced on the right. 
 

Porter and Pooya apply RC to compare the multidimensional 

functional performance of natural biological materials based on their 

mechanical properties [13]. Since the performance of a functional 

task is not determined by a single mechanical property but a 

combination of properties, the correlations between properties and 

functions are interested. Each axis represents a mechanical property 

(strength, modulus, etc.) and is normalized by maxima from 0 to 1. 

The permutation of axes is searched and determined by the maximal 

total area of resulting profiles. Shape descriptors like Jaccard indices, 

shape moments are also calculated as metrics to further compare 

these data. The Jaccard index, defined as the size of the interaction 

divided by the size of the union, determines the similarity of two 

profiles. The relative multidimensional performance is indicated by 

its normalized first moment of area relative to the boundary of the 

property space. As shown in Fig. 2, a “gap” on the chart would 

represent the relative intensity of a trade-off, larger gap suggesting 

the opposition of properties. With permutated radar charts, the 

research group validates that natural materials can hold strength and 

toughness at the same time, while they are considered to be mutually 

exclusive in mechanical materials. They further apply their radar 

charts to comparison beyond materials, on the performance of 

feeding vs singing of Darwin’s finches. They are able to successfully 

draw conclusions from the presented radar charts, which verifies the 

applicability of their method. 

Researchers also point out some constrains with their design, 

including “relative” performance comparisons and the cautious 

choices of various descriptors. Overall, researchers are satisfied with 

the performance of permutated radar charts and suggest potential 

applications on other filed of biological science or engineering. 

 

 
Fig. 2. Normalized, permutated radar charts comparing five 
collagenous tissues, where the profile averages (lines) and standard 
deviation/ranges (shaded regions) are shown on the outer edges; the 
center plot illustrates a trade-off between stiffness and extensibility 
[13]. 

 

4.1.2 RadViz 

As mentioned above, Hoffman was the first person who brought up 

the term “radial visualization”. Not only that, but he also introduced 

his visualization approach in the same paper: RadViz [4], which later 

became one of the most popular techniques to present multivariate 

data. The name of this visualization system is somewhat ambiguous 

as people may inadvertently interpret it as the abbreviation of “radial 

visualization”. We clearly state here that RadViz is a standalone 

name for this specific visualization technique.  

The design theory behind RadViz is innovative but simple at the 

same time. Dimensions are equally spread out on the circumference 

of the circle and act as pins or anchors. Imaging an invisible spring is 

connected to a data point and the anchor of the i-th dimension. The 

spring constant Ki would equal to the value of the data point on the i-

th dimension. Now for n-dimensional data, there will be n springs 

connecting the data point to the anchors, and the position of the data 

point is where the sum of the spring forces equals 0. Usually, the 

data points values need to be normalized between 0 to 1 to have a 

reasonable position, and the dimensions must be nonnegative. In 

RadViz, all data points lie inside the convex hull of anchors. 

In this case, a data point that has a higher value in one dimension 

would have a shorter distance toward the anchor of the 

corresponding dimension anchor. With some basic knowledge in 

mechanics, we can further infer that a data point with equal values in 

all dimensions locates right at the center of the circle. An n-

dimensional line will be map to a line, and a sphere will map to an 

ellipse. An intuitive graph interpretation of RadViz is illustrated in 

Fig. 3. Beware that in practical applications, these “spring lines” are 

usually hidden. 

 

 
Fig. 3. RadViz encoding illustration [14]. 

 

Hoffman’s motivation of creating RadViz was to find a new way 

to distinguish coding DNA sequences (exons) from non-coding DNA 

sequences (introns). In order to do this, symbolic DNA sequences are 

represented by numbers or vectors. In his application, the dimensions 

are nucleotides (A, C, T, G) with their appears in position (1, 2, 3, 4, 

etc.). Exons and introns are encoded by shape and color channels 

with exons as red crosses and introns as green circles. As shown in 

Fig. 4, since most data points lie close to the center, zooming is 

provided for a clear observation of the data. 

 



 
Fig. 4. displays 2000 points zoomed up by a factor of 5. In this picture 
we can see that the exons (red +) are more spread out, and the 
introns (green) are closer to the center of the circle [4]. 

 

Despite the popularity of RadVis, it has some significant 

drawbacks. Data points with different values but the same scale 

numbers in each dimension will ended in the exact same position, 

which means data points that are different in original space cannot be 

distinguished from the visualization layout [15]. This particular 

drawback is referred to as ambiguity. Another issue with RadVis is 

its high dependency on the order of dimension anchors. When 

applying visualization on multivariate data, people are often seeking 

to find the correlations, patterns and outliers in these data. However, 

in RadVis, the order of anchors can change the visualization view 

significantly, further influence the detection of statistical 

relationships in these data. It is a tough task to adjust the anchor 

order and hope to find the optimal view in the end. For even higher 

dimensional data, finding the optimal order of dimensions in RadViz 

is proved to be NP-complete [16]. A very detailed research on the 

properties of RadViz by Daniels et al. provides a more in-depth 

insight on this techinique [17]. 

 

We mentioned the ambiguity problem of RadViz, which occurs in 

special cases where values of data on each attribute are different by 

the same factor. However, even in normal cases, this ambiguity still 

exists to a certain extent. Data points on the RadViz layout cannot 

reveal their actual relationship in original space accurately. Data 

points that are not related may be presented very close on the graph, 

mislead observers to false conclusions. RadViz Deluxe [18] solves 

this issue by adding a three-stage refinement algorithm. Each stage 

reduces the error of distance between data-to-data, data-to-variable, 

and variable-to-variable respectively. The first stage reduces the 

variable-to-variable error by arranging anchors based on the 

approximate solution for Hamilton Cycle. The second stage reduces 

the data-to-variable error by using an iterative algorithm to reduce 

the error polygon area of each data point. The third stage reduces the 

data-to-data error by adjusting data points positions via force-

directed layout, based on the magnitudes of errors between data 

points. RadViz Deluxe results in a distance-spaced layout, which the 

anchors are not evenly spaced on the circumference, a comparison 

between RadViz and RadViz deluxe is shown in Fig. 5. RadViz 

Deluxe effectively mitigates the ambiguity issue. 

 
Fig. 5. The battery data set visualized with RadViz (left) and RadViz 
Deluxe (right). Compared to the original RadViz, the samples in the 
visualization generated by RadViz Deluxe are more scattered based 
on their components [18]. 

 

RadViz++ [19] presents another advanced RadViz layout with a 

set of interactive techniques. It sorts the anchor ordering based on the 

similarity of variables, using the Pearson correlation coefficient and 

the average-linkage Agglomerative Hierarchical Clustering (AHC). 

The anchor ordering follows the ordering of leaves in the computed 

cluster dendrogram.  

Two metaphors are proposed for variable-to-variable analysis. 

First is the variable hierarchy, which maps the prementioned cluster 

dendrogram on the graph. Parent nodes surround the basic circle 

layout as stacked fragment rings, and colormap from blue (similar) to 

green to red (dissimilar) indicates the similarity. Second, to further 

clarify the similarity between variables, RadViz++ uses bundled 

edges and hierarchical edge bundles (HEB) to connect similar 

variables, with transparency representing the level of similarity. To 

provide more detailed information about variable values, a histogram 

is plotted in each ring showing the value distribution of each 

variable. Clicking on a certain bin in the histogram highlights the 

data points in that value range. Based on the variable hierarchy, users 

are allowed to interactively aggregate or filter variables to compute a 

new layout with reduced dimensionality. To enhance data-to-data 

analysis, RadViz++ provides animation to switch from mapping 

generated by RadViz and mapping generated by other dimensionality 

reduction methods such as LAMP or t-SNE. When the layout is 

switched, RadViz anchors are greyed out to prevent 

misinterpretation. These DR methods usually present better cluster 

separation. In addition, analyzing high dimensional data with 

different visualizations is proved to be very effective. Sometimes 

users may be interested in analyzing a group of data points on the 

plot. In this case, a brushing-and-linking tool can be used to link 

selected data points to their variable histogram bins. Comparing to 

the original RadViz, RadViz++ has better scalability in variables and 

reduces the ambiguities in data analysis. 

 

 
Fig. 6. RadViz++, with HEB and histograms [19]. 

 



4.1.3 Star Coordinates 

Kandogan created star coordinates (SC) for the purpose of help 

people to understand their data easily at the early stage of their 

analysis tasks [20]. This technique is similar to scatterplot in spirit as 

it extends a typical scatter plot to higher dimensions. 

Axes representing attributes are evenly radiated out from the 

center point of the circle with the same length (initially). The final 

position of a data point would be the sum of all unit vectors on each 

coordinate multiplied by the value of the data for that coordinate.   

Fig. 8 can be used to help with understanding this approach. 

Theoretically, we can start from any axis and follow any order we 

want. In this case, as the figure illustrated, we start with axis C1 and 

going clockwise, locate the data point based on the first axis as its 

coordinate. Then change the coordinate to the next axis and move the 

data point according to its value on that axis. The choice of axes 

sequence does not matter, eventually we end up in the position P. 

SC also has some defects. It has the ambiguity issue just like 

RadViz, which a single data point on SC can represent various actual 

data. To overcome or at least reduce the effect of this problem, 

Kandogan provides serval interaction approaches. These interactions 

are further adapted in latter SC applications and became essential 

components of SC. 

The two major interactions are scaling and rotation. Scaling 

allows the user to change the length of the axis by dragging the end 

point of an axis away or towards the origin. By doing so, the 

contribution of a particular attribute can be increased or decreased on 

the visualization plot. Rotation allows the user to change the 

direction or angle of the axis by dragging any point on the axis and 

move to the desired position. Rotation changes the correlations of a 

specific axis to other axes.  

 

 
Fig. 8. Calculation of data point location of an 8-dimensional dataset 
[20]. 
 

 
Fig. 9. The visualization result of ASC [21]. 
 
 

 

 
Advanced Star Coordinates (ASC) [21] uses the diameter line 

across the circle instead of the spoke radiated out from the origin as 
the attribute axis. Combining the new coordinates with an optimized 
algorithm, the ambiguity problem of SC is resolved. The data structure 
and spatial relationship in the original data space is reserved in the 
ASC layout. ASC also applies a dimension sorting strategy based on 
Ankerst’s dimension arrangement algorithm [16]. Both the axis 
ordering and the angel between axes are determined based on 
correlation, with higher correlation axes next to each other and a small 
angle between them.  

 
Orthographic Star Coordinates (OSC) [22] restricts SC to 

orthographic projections to prevent data shape distortion. Interactive 
adjustments of axes are responded by on the fly repeated optimization, 
keeping the orthographic projection after interaction. OSC provides a 
distortion-free global patterns visualization in the original data space. 

4.1.4 Comparison between RadViz and Star Coordinates 

RadViz and SC are the two most popular techniques to present 

multivariate data in radial layouts. They are two visualizations 

techniques that support high dimensional data-to-data, data-to-

variable, and variable-to-variable analysis at the time [18]. Rubio-

Sanchez et al. point out that the biggest difference between RadViz 

and SC is the linearity [14]. SC generates linear mappings, while the 

normalization step in RadViz introduces nonlinearities. In some 

special propositions, RadViz and SC are equivalent. However, in 

most applications, RadViz and SC generate different graphs due to 

the differences in algorithm and linearity. Rubio-Sanchez et al. claim 

that nonlinearities affect the performance of RadViz in various 

aspects. 

Interpretation of the clusters can be more difficult in RadViz than 

in SC. When mapping a multivariate dataset with normal 

distribution, a plot generated by RadViz may not follow a normal 

distribution. Data at ends may be significantly far from others, 

misleading people to consider them as outliers. Naturally, the same 

problem would also influence outlier detection. RadViz has a lower 

detection probability than SC for extreme value outliers. However, 

for low likelihood outliers, both approaches have a poor 

performance. RadViz also tends to clump data points close to its 

origin. The average distance of data points to origin decreases as the 

number of data points increases, while it is the other way around for 

SC. However, the shape of distribution becomes very close for the 

two methods as the number of variables increases. The problem can 

also be solved by using the zooming feature in RadViz. The location 

of the cluster in its original data space can affect its appearance on 

RadViz. A cluster near origin will have a larger size when it is 

presented on RadViz. In a special case where the data only contains 

one none zero value, users can easily read out that value in SC. 

Whereas RadViz cannot provide any information about the actual 

value because the data is mapped at the anchor. The most significant 

advantage of SC over RadViz is the high degree of freedom of the 

Fig. 7. Orthography-preserving interaction with the axes of 
Orthographic Star Coordinates [22]. 



axes, which mainly contribute to data classification and separation. 

Users are able to manipulate the axes configuration of SC to 

reproduce other linear transformations like PCA, LDA, biplots, etc. 

Although some advanced algorithms support RadViz to perform 

such tasks as well, the accuracy is not as good as SC. Moreover, 

although recovering the actual data values is different for both 

techniques, users can get a relatively accurate estimation with proper 

axes configuration in SC. On the other hand, Rubio-Sanchez et al. 

admit the advantage of RadViz in analyzing sparse data. As shown in 

Fig. 10, RadViz presents sparse data close to anchors and non-sparse 

data close to the origin, while on SC they may be mapped in the 

same area and hard to distinguish. 

 

 
Fig. 10. Usefulness of RadViz for visualizing sparse data [14]. 
 

5 SEGMENT-BASED  

5.1.1 Circle Segments 

Circle Segments (CS) uses the pixel-oriented technique [23] to 

visualize a large amount of multivariate data in a circle. First 

introduced by Keim, the pixel-oriented technique uses each pixel in 

the display to encode one data value in order to visualize the largest 

amount of data possible. Since this technique uses pixels to map 

data, the arrangement becomes extremely important. Keim proposed 

several pixel-orientated arrangements for two different purposes. The 

first one is the query-independent visualization, which the data has a 

natural ordering in one or more data variables (e.g. time). The second 

one is the query-dependent visualization, which the data set has no 

natural ordering of data.  

Based on Keim’s concept, Ankerst et al. [24]  propose CS as a 

new pixel-oriented visualization method. CS assigns dimensions to 

the segments of a circle. A k dimensional data would cut the circle 

into k equivalent segments with each segment representing one 

dimension. As illustrated in Fig. 11, pixel representing the data point 

from one dimension goes back and forth along the “draw line”, 

filling the whole plot and end up being a regular polygon. In this 

proposed layout the trace of pixel represents the time dimension, 

with the initial data at the center and the more recent data on the 

outside. Coloring is used to indicate the magnitude of the data value, 

with high values to light colors and low values to dark colors. CS 

requires data set with at least three dimensions, and users can change 

the ordering of dimensions. Comparing CS to the traditional line 

graph (Fig. 12 and Fig. 13), CS does not have the drawback of data 

overlap, which makes the line graph unreadable in high dimensions. 

Moreover, it is easier to find analogic tendencies in different 

dimensions based on CS rather than the traditional line graph. CS is 

further compared with other pixel-oriented visualizations proposed 

by Keim, including the spiral technique and the recursive pattern 

technique. CS is proved to be more perceivable in terms of finding 

patterns, correlations and dependencies between dimensions. 

 

 
Fig. 11. "Circle Segments" technique for 8-dimensional data [24]. 
 

 
Fig. 12. Visualizing 7-dimensional data using the "Line Graph" 
visualization technique [24]. 
 

 
Fig. 13. Representing about 265,000 50-dimensional data items with 

the "Circle Segments" technique [24]. 
 

CS is not restricted to present time-series data, following case 

studies of using CS on Neural Networks (NNs) building are the 

examples. NNs are widely used sets of algorithms that generate 

simple models of the animal brain to recognize patterns. The most 

important property of NNs is the ability to learn from previous data, 

and apply the learned knowledge on the new data sample to give 

predictions. However, NN acts like a black box without giving 

information about how the prediction is generated. To further 



improve this approach and make it more convincing, it is important 

to include domain users in the data exploration and analysis process. 

The selection of input features of a NN can affect its performance in 

various aspects, and the number of input features is an essential 

factor. The performance of a NN model is directly related to the 

number of input features used. On the other hand, redundancy of 

irrelevant inputs can deteriorate the performance of the NN model 

due to the “curse of dimensionality” problem, which states that the 

performance of a NN model reduces after the number of inputs 

exceeds a certain point. Lim et al. try to analyze the effect of the 

input features to the target outputs and select the significant input 

features to build NN models by introducing visualization [25]. They 

propose a coupling of CS and the most widely used NN architecture, 

the multiplayer perceptron (MLP). This proposed approach is applied 

to three case studies for evaluations. 

In this approach, the CS layout design is divided into three 

stages: dividing, ordering and coloring. In the dividing stage, the 

circle is divided into the number of total inputs and outputs.  In the 

ordering stage, it is important to make sure the ordering shows the 

correlations between the input features and the output classes. The 

inputs are ordered around the circle based on their magnitudes of 

correlation to the outputs. The ordering stage also includes the 

ordering of different data samples, which is the major difference 

between the CS layout in this application and the original CS layout 

mentioned above. The original CS is filled with time-series data from 

the center to the outside, which limits the CS to depict only one data 

sample at different times. In this CS layout, data are not time 

referred, and the space is filled by lines across each segment. Each 

line represents the value of the corresponding input or output, and 

each data sample is encoded as a regular polygon. The thickness of 

lines is depended on the total number of data samples. With a large 

number of data samples, the lines are compressed to width of one 

pixel. In other words, this CS layout is not completely pixel oriented 

but still remains a CS displaying structure. The ordering of data 

samples is first determined by the output value. Data with the highest 

output value is encoded as the perimeter and data with the lowest 

output value is encoded at the center. If the data have the same 

output value, the ordering is then determined by the value of the 

input with the highest correlation to the outputs. If there is still a tie, 

then the values of the second-high correlation input are compared. 

This rule is followed until all data samples are sorted properly. In the 

coloring stage, each data value is normalized between 0 and 1, and a 

colormap is used to encode the magnitude of each value.  

The three case studies are the wire electrical discharge machining 

(WEDM) process, the Wine data set, and the stroke patient records. 

The objective of the WEDM case study is to test the ability of using 

CS to find out the effects of input features to target outputs. By 

comparing users’ observations from the CS and the main effects plot, 

it proves that users can conclude correct effectiveness information of 

inputs towards outputs using the CS diagram. For the Wine data set 

and the stroke patient records case studies, the objective is to see the 

improvements of using CS to select significant input features on the 

performance of the MLP network. Comparisons are made between 

three different methods: MLP without feature selection (referred as 

MLP), MLP with CS feature selection (referred as CS-MLP), and 

MLP with principal component analysis for feature selection 

(referred as PCA-MLP). In both cases, CS-MLP has the highest 

accuracy and lowest standard deviation. All three case studies 

support the usefulness of CS in selecting and analyzing the effects of 

the input features to the target outputs when building a NN model. 

5.1.2 Circle View 

Circle View (CV) is a radial visualization technique specified in 

analyzing fast changing time dependent data streams [26]. To avoid 

confusion caused by the overwhelming data information, CV 

presents only aggregated information to help analysts at the initial 

overview data analysis stage. It combines the radial layout and the 

hierarchical display technique to present time referenced 

multidimensional data.  

 

 
Fig. 14. Circle View showing the evolution of multiple attributes over 
time [26]. 
 

As shown in Fig. 14, the basic idea of CV is to use circular 

segments to represent data dimensions and radius of the circle to 

represent the time dimension. The circle is divided into a number of 

segments based on the number of dataset dimensions. These 

segments are further divided by concentric circles with different 

radiuses representing the propagation of time. The direction of such 

propagation can either start at the center point toward the edge or 

vice versa. The change in radius of the concentric circles is the time 

interval, also referred as to the time slot, which its unit can be 

determined by the user based on the application scenario (second, 

minute, hour, etc.). The level of the time interval can be selected 

interactively when the corresponding data is available. Each cell in 

the CV would represent the aggregated value of an attribute over a 

certain period of time. This value is encoded in colors to identify its 

magnitude. The ordering of attributes is computed based on 

similarity, but changing the ordering manually is possible which 

helps to compare attributes that are far apart. By using CV, it is easy 

to compare the data values in neighbor attributes at a certain time. It 

is also convenient to compare data values in one attribute from 

neighbor time slots, and observe the changes of the value over time. 

Although CV presents historical data and the current time data at the 

same time, people usually find the current time data more important. 

CV emphasizes the current time data by adjusting the space of each 

time slot. The change of radius of the concentric circles is no more 

constant but proportional to the time propagation. Depends on the 

user defined time direction, CV now presents as concentric circles 

with either increasing radius or decreasing radius. When using CV to 

visualize continuous data streams, the time slots are shifted to the 

center or to the edge depending on the preset time propagation 

direction. As shown in Fig. 15, information with the new time slot is 

added to the plot with the oldest time slot disappeared. One way to 

interpret this transformation is to see it as a sink or source of fluid 

flow. The user can choose a start and end time of the dataset, and the 

update of CV is presented by animation. The user can also choose 

the update time to control the speed of animation. An extension of 

multiple views is also available for CV, which is called Multi-Circle 

Views. Muli-Circle Views can be applied to view different data with 

the same attributes, or different combinations of attributes from one 

data. Such visualization is useful in finding the local patterns in 

different groups of attributes. When using Multi-Circle Views to 



visualize different groups of attributes, each CV has a different 

diameter representing the weight of the group of attributes.  

 

 
Fig. 15. Circle View visualize a continuous data stream over time [26]. 

 

Mariano et al. introduce CV to the field of Phenology [27]. 

Phenology is a science that studies the periodic life cycles of plants 

and animals and their relations to the environment. Mariano et al. 

create a novel visualization approach by combining CV with visual 

rhythms to present phenological data. Visual rhythm is a 

methodology that samples the images from a video using different 

criteria and combines them into one image that shows the changes of 

the video over time. In this paper, the researchers apply the visual 

rhythm approach on the time series tabular data derived from on-the-

ground phenology observations. Instead of sampling images from a 

video, researchers are sampling small tuples of table from the large 

phenology observations data table. Each tuple of table contains all 

observations data in a certain time, analogic to one frame in a video. 

The radial visualization idiom is a modified CV. The modifications 

are mainly two parts. This idiom still uses concentric circles to 

represent time attributes, such as years, months, or days. However, 

this idiom utilizes the inherent cyclic property of the radial 

visualization. Instead of using segments to assign other dependent 

attributes, they are used to represent the periodic property of the time 

attributes. For example, when days are assigned to the concentric 

circles, the circle can be divided into twenty-four segments with each 

one represents one hour. Each segment is further divided into sub-

segments as the nominal attributes, including individuals, species, 

phenophases, or weather sensors. Comparing to the original CV, 

where each attribute appears only on one segment, the modified CV 

has attributes that appear various times around the circle. Second, 

they leave an empty hole in the center, so the innermost information 

is not too small to observe. The hole can also be potentially used to 

display some extra information. Other than these minor changes, this 

idiom follows the same design as the CV. Propagation of time, in the 

unit of years, is encoded as concentric circles from inside out. Colors 

are used to represent the magnitude of data values in cells.  

In the testing and evaluation stage, the design team proposes 

seven prototypes for detailed visualization, which visualize 

individual-related data; and five prototypes for summarized 

visualization, which visualize species-related data. The general 

encoding design is the same for every prototype. Concentric circles 

are assigned to years, and the whole circle is divided into twelve 

major segments representing twelve months of the year. The major 

segments are further divided into sub-segments representing 

phenophases. Each cell represents the intensity of the corresponding 

phenophaes, denoted by a score of 0, 1, or 2. For detailed 

visualization, the score is a direct measurement of phenophases’ 

activity. 0 is absence, 1 represents a low activity between 0% to 

50%, and 2 represents a high activity between 50% to 100%.  For 

summarized visualization, the value in each cell represents the 

percentage of individuals from a particular species that have a 

phenophase intensity score above 0. In one of the prototypes, climate 

data of precipitation is presented at the center of the CV. In other 

prototypes, the precipitation is assigned to an extra sub-segment. The 

differences between prototypes are in their labels, legends, and 

colormaps. According to testers’ feedbacks, Prototype 3 (Fig. 16) for 

individuals and Prototype 2 and 3 for species received the highest 

rating on analyzing complex phenology data.  Based on the test 

results and feedbacks, the research team concludes two potential 

improvements to the current design. The two types of climate data 

encodings should both be reserved as options for users depending on 

different research objectives. In addition, the visualization idiom 

should include an interaction mechanism for the user to choose the 

colors used in the colormap. 

 
Fig. 16. Prototype 3, phenophases represented by icons [27]. 
 

Based on the previous studies and researches, Mariano et al. 

create a visualization tool named as RadialPheno [28]. While the last 

paper focuses on visualizing on-the-ground observations data, this 

paper pays more attention to camera-derived near-surface remote 

data. Digital cameras called phonecams are installed at near ground 

level or at the top of towers. Sequential images are taken by these 

cameras. When analyzing these images, researchers define the region 

of interest (ROI) from the images. For each ROI, vegetation indices 

are extracted from the digital images. One possible index is the green 

chromatic coordinate (Gcc) index, which describes the normalized 

green amount in a digital image. These data are generated in a CSV 

file and can be directly inputted into RadialPheno. Users can 

manually enter the on-the-ground observations data to a CSV file 

and input it into RadialPheno as well. Therefore, RadialPheno can be 

used to either analyze and compare the on-the-ground data and the 

camera-derived together, or present and analyze these data 

separately. RadialPheno provides interactive filtering base on the 

attributes in the CSV file. The filtering options include species, 

years, and periodicity. There are many differences between 

RadialPheno to the previously built prototypes. The biggest one is 

that sub-segments are no longer used for nominal attributes. 

Therefore, RadialPheno is restricted to represent data of one specie 

over years, or data from different species within one year, as shown 

in Fig. 17. Users can switch plots of different species or different 

years by using the previous (<<) and next (>>) buttons. The sub-

segments are now assigned to periodicity. A more detailed time data 

will have finer sub-segments. When the periodicity is select to be 

monthly, only the major segments appear on the graph. RadialPheno 



has some limitations. It is hard to identify data presented in the inner 

circle as the size of segments is constrained by the radius. Also, 

additional interaction mechanisms are needed for data selection 

based on database-oriented technologies and selection of 

visualization settings. 

 

 
Fig. 17. RadialPheno visualizing daily Gcc values during the year 
2012, observed for individuals of four species [28]. 

6 OTHERS  

6.1.1 VisAxes 

VisAxes is a visualization framework that consists of two novel 

radial visualization techniques – TimeWheel and MultiComb [29]. 

Both techniques use the same design of axes. Each axis is 

corresponded to one variable and scaled from the variable’s 

minimum to maximum. What makes the axes design distinctive is its 

interactivity. VisAxes creates three types of axis depends on the 

characteristic of the variable: scroll axis, hierarchical axis and focus 

within context axis. The scroll axis is mainly used for variables with 

a large number of values. It combines a slider to the axis and users 

can set the start and the end of the slider to choose the size of 

interest. Users can further drag the slider along the variable domain 

to switch the range of interest. The hierarchical axis is used for 

hierarchically structured variables. The hierarchical axis is first 

divided into segments with the number of nodes in the first level 

(children of the root). Selecting one segment and that segment is 

further divided into sub-segments of corresponding children nodes. 

Animation is used in this axis variation process to avoid visual 

discontinuity. The focus within context axis is also used for variables 

with a large number of values. It is different from the scroll axis 

because it always maps the entire variable range, and creates a focus 

within a range of interest while remaining the context values on the 

axis. Users can interactively change the focus on the axis. The 

fundamental concept of both TimeWheel and MultiComb is they 

both set an axis as the reference axis representing an independent 

variable. Time would be the most common independent variable, but 

any other appropriate variables can be applied. In order to distinguish 

between data from different variables, depended variables are 

assigned to different colors. 

For TimeWheel, the time axis is placed at the center of the plot 

and circularly surrounded by other depended axes to form a regular 

polygon shape. The line is connected from the variable value to its 

time value. From Fig. 18, it is clear that the relation between the 

dependent variable and the time is easier to observe when the 

variable axis is parallel to the time axis. Therefore, TimeWheel 

provides interactive rotation to move the axis to the desired position. 

On the other hand, when axes are not parallel to the time axis, the 

connected lines become crowded. To reduce clutter, the TimeWheel 

uses coloring fading based on the angle of lines. It also automatically 

adjusts the length of value axes, so the information on axes that are 

interested (parallel) is amplified, and the less important information 

on other axes is weakened. The TimeWheel can be considered as a 

transformation of Parallel Coordinates to present multidimensional 

time referenced data.  

 
Fig. 18. A TimeWheel. Six variable axes are arranged circularly 
around an exposed centered time axis [29]. 
 

MultiComb is a combination of multiple plots for every 

dimension. As shown in Fig. 19, it has two possible arrangements. In 

the first arrangement, the time axes are arranged radially with value 

axes pointing outward. In the second arrangement, the value axes are 

arranged radially with time axes spreading out. Like TimeWheel, 

MultiComb also provides interactive rotation for users. The 

arrangement of the MultiComb naturally creates a blank space in its 

central area, which is available to present additional information. The 

paper suggests using a spike glyph to fill this blank hole. The spike 

glyph is useful in direct data value comparison and to provide a 

history of past data value. For value comparison, the selected data 

value is represented by the length of the corresponding spike, which 

has the same color as the data dimension and points in the direction 

of that dimension. The arc at the end of each spike acts like a gridline 

as mentioned in RC and helps with comparison. For the aggregated 

history view, spikes are extended fully, and a certain number of arcs 

are plotted on each spike representing aggregated values. For each 

arc a specified number of values are aggregated, and the aggregated 

value is encoded as the angle of the arc. The aggregated history view 

gives the user an idea about the pattern of values in the last time 

period.  

 

 
Fig. 19. The MultiComb. Left: The axes of depending variables extend 
outwards from the center. Right: The axes of reference extend 
outwards [29]. 
 

Based on testing, VisAxes has a scalability of up to 15 axes. 

However, the analysis of data becomes more difficult once it reaches 

10 axes. TimeWheel and MultiComb are most suitable to compare 

different time depended variables and try to find their correlations. 

Like other radial visualization techniques presented in previous 

sections, the arrangement of the variable axes affects the 

performance of revealing data patterns, tendencies and correlations. 

For the future work, the research team intend to arrange the axes 

based on similarity or entropy, and compare the effectiveness of 

different arrangement using computer human interaction study. 



6.1.2 Wind Rose 

The history of wind rose goes back a long time, even before the 

creation of the compass. In the 13th century, Italian and Spanish 

sailors already included the wind rose in their map to show the 

directions of the eight major winds [30]. Later on, with the 

appearance of the compass, the wind rose is combined with it to be 

the compass rose or the compass card. However, the early historical 

wind rose has no distinction between the cardinal directions and 

winds coming from these directions. The fairly simple configuration 

of the historical wind rose provides very little information and does 

not need a detailed analysis. Therefore, we only focus on the design 

and application of the modern wind rose in this section. 

The modern wind rose (hereinafter referred to as wind rose) 

presents the summarized information about the wind at a particular 

location over an observation period. The summarized information 

often includes the directions, speeds and frequencies of winds. Here 

the frequency is interpreted as the percentage of time of the wind 

coming from a certain direction. The wind rose uses the angel 

channel to display cardinal directions, just like the compass. A 

typical wind rose has 16 cardinal directions, but the resolution can go 

higher to 32 or even more based on users’ demand. Sharp triangular-

shaped ray radiates out from the center and points to the direction 

which the wind is coming from. The length of each ray indicates the 

frequency of the wind, usually with concentric gridlines to help 

identifying the actual value. In some applications, the length can 

directly represent the total time (hours, minutes, etc.) of the wind 

blowing from the specified direction. A segmented colormap is 

applied in these rays to show the speed of winds, with each color 

represents a range of speed. Similar to the length of the rays, the 

length of each color segment in a ray is proportional to the speed 

frequency of the wind in the corresponding direction. A common 

trick in the wind rose is to display the frequency of calm (zero speed) 

or nearly calm air at the center. It does not only save a color channel 

for the speed frequency, but also provide an indentation so the 

information at the center of the wind rose is less crowded. Fig. 20 

shows an example of a wind rose. The wind rose is useful in various 

fields, including sailing, architecture, wind farms and airport 

runways constructing [31].  

 

 
Fig. 20. Wind rose plot for LaGuardia Airport (LGA), New York, New 
York. 2008 [32]. 
 

6.1.3 Sun Path Polar Plot 

The sun path polar plot presents the path of the sun across the sky 

over a day as seen from a given location. Due to the nature of earth 

orbit, any location at the same latitude has the same sun path [33]. 

Assuming the earth to be a perfect sphere and projecting the 3D 

sphere on a 2D canvas with the observer at the center point. Angel is 

used for cardinal directions, in this case the azimuth, starting at north 

as 0/360 degree and going around to the east of north direction. 

Radius represents the altitude, with outer perimeter as 0 degree 

(horizon) and the center point as 90 degree (zenith). The horizontal 

arc across the circle is the path of the sun on a specific day. A sun 

path polar plot integrates the sun paths over a year using multiple 

horizontal arcs, with lines vertically cross these paths indicating the 

particular solar time of the day. Date and time are labeled right next 

to the corresponding arc respectively. Noticing only half a year’s sun 

paths are plotted, that is because the remaining half has the exact 

same paths due to the orbital revolution of the earth. It is easy to 

locate the position of the sun at the specific date and time from the 

sun path polar plot. Moreover, it is readily to conclude the pattern 

and tendency of the sun path. For example, Fig. 21 presents the sun 

paths in Rotterdam. It experiences its longest daytime in June of 

around 16 hours, and the shortest daytime in December of around 8 

hours. Interactive sun path polar plot is also possible using computer 

programming languages. A very good example is [34] based on D3, 

which provides interactive selections of latitude, longitude, time 

zone, date of the year and time of the day. It is also different from the 

traditional sun path polar plot by presenting the local standard time 

on the plot with more accurate hour lines. 

 

 
Fig. 21. Sun path polar chart for any location at the latitude of 
Rotterdam [35]. 
 

7 CONCLUSION  

This paper proposes a survey on visualizing multivariate data in a 

radial layout. We categorize these techniques into two major types: 

axis-based and segment-based. In the axis-based category, data 

attributes are assigned on the axes of the circle. In the segment-based 

category, the circle is divided into a number of segments, and each 

segment will represent one data attribute. We found some radial 

visualization techniques being more complex that cannot be simply 

classified into these two categories, and we put them into the others 

category. When applying axis-based radial visualization, researchers 

are usually trying to compare these multivariate data, look for 

potential clusters, patterns, outliers, etc. We include Radar Chart, 

RadViz and Star Coordinates for axis-based radial visualization. 

Segment-based radial visualization is mostly applied, but not limited, 

to visualized time referenced multivariate data. We include Circle 

Segments and Circle View for segment-based radial visualization. In 

the others category, we introduce VisAxes, Wind Rose, and Sun Path 

Polar Chart. Going through these papers and articles, all techniques 

included are proved to be effective in multivariate data analysis. 

Therefore, this survey confirms the validity of radial visualization 

being a noteworthy class of techniques to perform multivariate data 

analysis. However, no technique outperforms others in every single 

aspect, and radial visualization is not the optimum solution to 

visualize multivariate data. Users should carefully select their 

method to analyze multivariate data based on different tasks and 

objectives. 
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