L-Vis: Analyses on My Mind

Visualizing Language-Level Provenance

Francis Nguyen and Joseph Wonsil

Digital Provenance

Application

Language

System

Application-Level Provenance in Visualization

- Depicts workflows (a series of tasks) and processes
- Useful in deriving current state and possible choices or explored options
- Can track data-flow through a system, but tends to focus on interaction history or task history
- Useful in visual analytics!

Fig 5. Provenance Tree from *Walch et al. 2018.* LightGuider: Guiding Interactive Lighting Design using Suggestions, Provenance, and Quality Visualization

System-Level Provenance

- System level collects **execution traces** at the level of the operating system
- Useful for security and verification (look at deltas in provenance)

Fig 1. Macko & Seltzer. Provenance Map Orbiter: Interactive Exploration of Large Provenance Graphs.

Our focus: Level-Language (LL) Provenance

- Useful for reproducibility in scientific analysis
- Visualization space is relatively unexplored
- Has a *manageable eco-system to leverage (containR, RDT, Dataverse)
- We wanted to make our lives easier when inheriting "grad student code"

*Still painful but more accessible than system-level provenance tools

Pimental et al. 2015. Collecting and Analyzing Provenance on Interactive Notebooks: when IPython meets noWorkflow

Figure 5. Provenance collection in notebook using noWorkflow

Provenance Visualization

- If you haven't noticed yet, the canonical representation of provenance are network graphs node-link diagrams
- Great for showing structure and relationships (contingent on layout algo)
 - o Often this is what you want
- But of course some problems follow....

Issue: Scale

Two Line R Script Provenance Graph

12 Nodes 8 Edges

Issue: Assessment Robustness of Visual Encodings

- Only a handful of studies quantitatively measure the usefulness of provenance visualization
 - Corlissen et al. 2010, Macko et al. 2011, Borkin et al. 2013
- Do we know network graphs are the best idiom?
 - Are some layout algorithms preferred in networks? Why? For what tasks?

VisTrails https://www.softpedia.com/get/Programming/Other-Programming-Files/VisTrails.shtml

InProv Borkin et al. 2013

Issue: Network layouts

• Apparent features are by-products of layout algorithm

Krzywinski et al. 2010

http://egweb.bcgsc.ca/img/networklayouts.png

Issue: Novel Usage

- Prov tools might visualize provenance to examine differences
- Often allow users to explore the provenance graph
- Visualize "for the sake" of it
- Focus has been on **collection**, **not usage** in meaningful ways

- We are interested in the lens of **program comprehension**
 - How do provenance visualizations aid cognition of programs?
 - How can it facilitate the development of mental models of code?

Past Solutions/Existing Approaches

- Only select "relevant nodes"
- Graph summarization nodes bigger nodes represent clusters
- Allow navigation via semantic zoom in network-graphs
- Different graph layout algorithms based on different metrics
 - Time-based layouts, unsupervised clustering, MCL clustering

Task Abstraction

We conducted brief informal interviews for what our vis should support in addition to corroborating information from related work.

- 1. Reverse engineering of design patterns. (Follow crash nodes)
- 2. Navigate multiple overviews of the system architecture at various levels of abstraction. *(Multiple views & data abstraction)*
- 3. Investigate specific contexts. (Semantic zoom)
- 4. Support goal-directed, hypothesis-driven comprehension. For example, the cause of the bug is **x**.
- 5. View paths or relationships that led to the current focus. (Graph layout)
- 6. Understand syntactic and semantic relationships between variables and functions. (Graph layout)

Scenario

- Final-year PhD student has scripts/analyses on a dataset upload data/scripts to containR
- New graduate student joins the lab & needs to edit code!
- containR and provenance work!
 - The old scripts still run exactly as they did before because they are running in a container.
- L-Vis helps the student learn how the old plots were created
 - Allows them to cleanly insert new code into the analysis*
 - Uses the **detail view** of the plot node in order to view all the code-snippets and variables related to generating the plot
- Dynamic what-if analysis
 - To begin building a mental model of the plot generation code, the new student uses the detail view and changes variables in order to see how the plot changes dynamically*

Platform: containR

- Website for increasing scientific repeatability
- 'Containerize' R analyses, includes provenance
- Can also be used for archiving other analyses from Dataverse
- Not currently supported. We are updating, extending, and running locally

containR	Home	Build Image	Build Status	Instructions	About		
Hi, jv	/ons!						
Your Do	ocker In	nages					
Name	Date Created			URL			
llvis-3	11/19/19 05:33PM UTC			https://hub.docker.com/r/jwonsil/jwons-llvis-3/			
llvis-2	11/19/19 05:10PM UTC			https://hub.docker.com/r/jwonsil/jwons-llvis-2/			
llvis-1	11/19/1	9 01:22AM UTC		https://hu	b.docker.com/r/jwonsil/jwons-llvis-1/		

containR in our scenario

- Users choose container
- Visualization is started based on provenance
- Users can toggle between scripts in their analysis

containR	Home	Build Image	Build Status	Instructions	About
Your Sci Script Name	ripts to	Visualize			
prov_Descr	ptive+Stat	s_08052016.jso	n		
prov_Figure	1_080520	16.json			
prov_Figure	3_080520	16.json			
prov_Figure	2_080520	16.json			

Our solution

Data abstraction — Filter

- We choose to filter all nodes and explicitly show **crash nodes** these are procedures where two (or more) different data nodes are both used and a new data node is created.
- Through visualizing crash nodes, the focus of the visualization becomes the path of data through the scripts and how different inputs may interact / depend on each other.

Our solution

Exploratory visualizations — Graph Layouts

Hive Plots — Arrange Data on axis meaningfully

containR Home Build Image Build Status Instructions About	Logout
Your Scripts to Visualize Script Names prov_Descrptive+Stats_08052016.json prov_Figure3_08052016.json prov_Figure3_08052016.json	
Network Layout	Search a node PG Type: Proceedure Pase: 2001 remon(thr:2000)[statentmean] Referenced by: 2 other nodes Output: to: p?9 Children Depth Isit: p81, nomes: y2 << c(t1998.(1999.(2000), type: Procedure, Procedure) Isit: p81, nomes: y2 << c(t1998.(1999.(2000), type: Procedure, Procedure)
	Filter By: Time Node Type # of Inputs OutputType Rearrange Axis By: Time Node Type In-degree

Allow users to zoom to specific nodes

containR

Build Status

- Change layouts if used to other network layouts
- Detailed node view
- Will eventually include better references to analysis code
- Perceptually meaningful!

Your Scripts to Visualize		
Script Names		
prov_Descrptive+Stats_08052016.json		
prov_Figure1_08052016.json		
prov_Figure3_08052016.json		
prov_Figure2_08052016.json		
Network Layout	Search a node pge Total number of links: 2 Desc: 22001 <> mean(hrc2001\$latentmeon) Referenced by: 2 other nodes Output to: p79 Children Depth • id: p81, name: x1 <- c(r1998;2013), type: Procedure, • id: p82, name: y2 <- c(c1998;c1999,c2000, type:	p66 - Hierarchical Relationships
	Filter By: Time Node Type # of Inputs Rearrange Axis By: Time Node Type In-degree	OutputType

Evaluation

- (informal) User study to compare L-Vis to other LL-Prov tools
 - DDG Explorer versus L-Vis
 - L-Vis + script versus just script
 - In a formal study would probably assess efficiency and accuracy in performance
- NASA-TLX for assessing workload
- Performance evaluation for interactive responsiveness
- Case Studies

Yay NASA!

NASA Task Load Index

Hart and Staveland's NASA Task Load Index (TLX) method assesses work load on five 7-point scales. Increments of high, medium and low estimates for each point result in 21 gradations on the scales.

Name	Task		Date	
Mental Demand	Hov	v mentally de	manding wa	is the task?
Very Low				Very High
Physical Demand	How physica	lly demandin	g was the ta	isk?
Very Low		<u> </u>	<u>FTT</u>	Very High
Temporal Demand	How hurried	or rushed wa	s the pace of	of the task?
Very Low			111	Very Higt
Performance	How success you were ask	sful were you led to do?	in accompli	ishing what
Perfect				Failure
Effort	How hard did your level of	i you have to performance	work to ac	complish
		TIT	TIT	1111
Very Low				Very High
Frustration	How insecure and annoyed	a, discourage I wereyou?	ed, irritated,	stressed,
			111	
Very Low				Von Ulat

In the future...

- Finish the prototype and add it to the containR workflow
- Optional filters of data to toggle traditional network layouts
- Design study to derive more formal tasks from users and get iterative feedback
- (more formal) Quantitative study to compare L-Vis to other LL-prov tools

L-Vis: Analyses on my Mind

