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Fig. 1. Two examples of interaction with hive plots in L-Vis. Clicking on a node displays additional information about the selection
(left). Users can view related nodes that have relationships to the current node. Hovering over a link between two nodes shows the
dependencies between the two (right).

Abstract—There are many situations where collaborators have to understand previously written code; users reviewing their colleague’s
analysis scripts, an engineer returning to old code personally written long ago, or new researchers inheriting legacy code for
maintenance. To aid with program comprehension, provenance, the history of the derivation of an object, is typically captured and often
visualized to understand the history of functions and variables throughout the program process. However, the scale of provenance that
is collected can overwhelm a person’s ability to parse it. We present L-Vis, a language-level provenance (LL-Prov) visualization tool
that leverages the hive plot visual idiom, a semantic graph layout visualization, to more accurately discern relationships and structure in
scientific analyses. We find that L-Vis is more accurate and efficient than other language-level provenance tools, and users subjectively
prefer the experience of L-Vis over alternatives.

Index Terms—Program comprehension, Scientific analysis, Provenance, Network layouts, Hive plots.

1 INTRODUCTION

It is a common occurrence where a graduate student inherits convoluted
code from a previous, possibly graduated student. Their advisor then
asks them to update the code and add new features. To complete the
task, this new student has to figure out how the confusing code works,
often beginning by constructing a mental model of the code structure.
Understanding how programmers interpret new code is the subject of
research in program comprehension. Specifically, previous work in
program comprehension defines common questions programmers ask
or tasks they complete to achieve comprehension [12,25,28]. Based on
these studies, we hypothesize that provenance can be a helpful tool to
facilitate program comprehension.

Provenance is the history of how an object came to be in its current
state. In computer science, tools collect and use provenance at various
scales in different domains. For example, system-level provenance is
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a record of kernel objects and the relationships between them while
application-level provenance is a record of inputs and outputs to pro-
grams and the connections between them. Language-level provenance
(LL-Prov) is a history of the execution of a program at the source code
level. This history includes control flow, values, types of variables,
libraries imported, and the connections between all of these [13].

However, it is not easy for even trained users to parse this historical
information. This difficulty is in part due to the representation of LL-
Prov: a directed acyclic graph (DAG) consisting of multiple nodes
and edges. Users need to sift through databases or long files of nodes
and edges to make sense of collected provenance. A common solution
to this problem is to provide visual assistance through information
visualization [10, 27]. Provenance in the form of network data can be
directly visualized as a node-link graph.

Naturally, with visualization solutions also come visualization prob-
lems. For example, visualizing network data at scale is a huge issue:
networks quickly become illegible when displayed on a screen due to
the scale of the information [23]. To ensure this data is understandable
to a user, visualization designers must carefully judge design trade-offs
between filtering, aggregating, and displaying network data. Addition-
ally, designers must consider the problem domain, domain-specific
tasks, and users their visualization is designed for. Failure to take into
account any one factor can result in an ineffective visualization that



Fig. 2. DDG Explorer can encounter problems with large provenance
graphs. This figure shows a real-world analysis visualized by the tool.
The graph is linear and only a small portion can be read at a time, and it
is near-impossible to infer the data flow from start to finish.

does not fulfill the requirements of its target users. Based on our own
examination of the domains of provenance and program comprehen-
sion, we created a visualization intended for use by scientists writing
data analyses.

We present L-Vis1, a tool for LL-Prov visualization, designed to
assist users in comprehending data analyses written in the R statis-
tical computing language. L-Vis extends a previous reproducibility
workflow tool, containR [8], and adds a visualization component to
facilitate interpretation of R analyses. We choose to display prove-
nance with a hive plot network layout [17]. Hive plots are a variation
of a node-link graph that semantically layout nodes across multiple
axes to encode more information into the display. We hypothesize that
compared to traditional LL-Prov visualization tools, this visualization
idiom more effectively encodes R script structure, adding clarity to
relationships between nodes of the provenance graph. We define a set
of task-abstractions and requirements for L-Vis by conducting a set of
unstructured interviews with programmers of varying experience. We
present the results of an informal qualitative study to evaluate L-Vis’
utility for program comprehension tasks.

Our contributions are therefore (1) characterization of common tasks
necessary for program comprehension when analyzing language-level
provenance, (2) L-Vis, a language-level provenance visualization tool
that utilizes hive plots to semantically groups nodes according to desired
attributes, and (3) a qualitative user study examining the utility of L-Vis
for program comprehension.

2 RELATED WORK

We motivate and contextualize L-Vis based on previous work in prove-
nance, network, and workflow visualization.

2.1 Provenance Visualization
The design spaces of prior provenance visualizations are perhaps the
most relevant for the design of L-Vis. We examine visualizations tools
that depict varying levels of provenance.

DDG Explorer is a visualization tool that targets the same goal of
visualizing LL-Prov. This tool is specifically designed for language-
level provenance (LL-Prov) generated from the R language [18]. DDG

1This project was done as a dual project for CPSC 547 and CPSC 508. The
structure of this paper is written to match the layout of 547, but still include some
of the work that was performed for 508. Some notes are distributed throughout
describing what was done for which course, as well as a section at the end
describing this in more detail.

Explorer creates node-link graph visualizations where each node rep-
resents executions, variables or other control structures, and edges
represent control and dataflow. Similar in spirit but different in scale,
VisTrails utilizes a node-link graph, but is designed for application-level
provenance [7]. Researchers can use this tool for exploratory analyses
where the aim is to visualize scientific workflows, allowing them to
keep track of previous steps in their exploration. Both these prove-
nance visualization tools fail for common reasons. For large, complex
datasets, the strategies employed by DDG Explorer and VisTrails tend
to break down and become increasingly difficult to interpret and derive
structure from. Additionally the graph layout algorithms used by both
these tools are relatively simple: layout relationships vertically along
the canvas, stretching the node-link graph long. This type of layout
algorithm can make it easier to see direct relationships between parents
and children, however makes it impossible to follow nodes whose con-
nections extend to higher depths. How DDG Explorer handles large
provenance graphs from a real-world analysis can be seen in Fig. 2.
L-Vis directly addresses this concern, choosing an opinionated way to
filter data and leveraging a graph layout algorithm that semantically
encodes node position.

ProvThreads captures application-level provenance data and displays
user interaction logs to show an analyst’s thought process [22]. This tool
displays user interactions through colored lines that represent different
data topics. Mohseni et al. chose this encoding based on their task
abstractions to analyze user workflows and decision points in scientific
analysis. However, this encoding is incompatible with L-Vis as the
tasks between these tools differ significantly even though provenance
is the target for both visualizations.

As a contrast to the traditional node-link graph, InProv is a top-down
tool designed for whole-system provenance [5]. InProv leverages radial
layouts of time-based hierarchical groupings to improve accuracy and
efficiency of finding nodes in addition to helping users understand high
level concepts of the provenance. Borkin et al. find that these layouts
improve accuracy and efficiency of finding nodes, but visualize system-
level provenance instead of LL-Prov. Researchers constructed this tool
as an alternative to Orbiter, a node-link graph visualization that suffers
from the same scalability issues as DDG Explorer [20]. While InProv
slightly improved participants accuracy and efficiency in the quantified
tasks in system provenance, we find that these tasks abstractions do
not adequately cover the range of tasks necessary for program compre-
hension. Additionally, while a small majority of participants preferred
InProv to a more traditional graph layout (Orbiter), the other subset of
participants noted that traditional node-link graphs were more familiar
and therefore more preferable.

In our work, we embrace the design lessons of InProv: instead
of leveraging a new visual idiom, we extend the traditional node-link
graph so that users may feel comfortable with a familiar visual encoding.
However, we improve on this layout by encoding additional semantic
information in the graph layout.

2.2 Network and Workflow Visualization
The network visualization community has spent extensive time develop-
ing effective techniques for drawing large complex networks [1–3, 14].
Some work suggests multiple views of a visualization in order to pro-
vide context to a user; a main canvas in addition to zoomable views
where a user can investigate further [27]. We found these dashboards
to be good points of reference. In particular, ExtraVis is a trace visu-
alization tool that provides two interactive views of large execution
traces [9]. One view displays a massive sequence view of the trace
and the second produces a ”circular bundle” view that hierarchically
projects the program’s structural entities on a circle. ExtraVis visualizes
system-level traces as opposed to LL-Prov. While the tool does answer
some questions on granular program comprehension for debugging, it
fails to encapsulate high-level program comprehension.

BioFabric [19] is a tool that proposes a novel approach to network
visualization. BioFabric is specifically designed for scale in the domain
of biological research. BioFabric encodes nodes as one-dimensional
horizontal line segments, breaking the notion of the typical node-link
graph representation. While BioFabric succeeds in visualizing structure



in large scale biological datasets, its approach loses visual effectiveness
when representing medium-sized networks or smaller.

While both workflow visualization tools give examples of the visual-
ization design-space of dependency relationships, they both consider
trade-offs in design targeting specific scales. ExtraVis does not ade-
quately address the scale issue of provenance data while BioFabric
cannot effectively communicate structure in smaller scale networks.
While neither tool is designed with LL-Prov in mind, we take into
consideration both approaches and combine their philosophies in the
design of L-Vis.

3 DATA AND TASK ABSTRACTIONS

We discuss our data abstraction for the scale of provenance we are
using and the tasks we defined through user interviews and program
comprehension research.

3.1 Task Abstraction
To derive domain-agnostic requirements of L-Vis, we first identify com-
mon tasks from program comprehension literature. Tasks in program
comprehension outline requirements that are fulfilled when constructing
conceptual models of code. We narrow down the many tasks proposed
in program comprehension by conducting unstructured interviews to
gather requirements from our target users. We conduct interviews with
graduate students who have recently inherited code in the past term,
students in introductory programming courses, and professors with
a research focus in program comprehension. Our main goal in this
process is to identify common tasks and processes users undertook
to understand unfamiliar code. A complementary goal was to define
requirements that an effective visualization should address.

Program Comprehension Tasks
Extensive work in program comprehension explains cognitive models
employed by programmers in solving and accomplishing real-world
tasks such as fixing bugs or adding new features.

Storey discuss multiple program comprehension strategies that soft-
ware engineers employ [29]. These mental models involve top-down,
bottom-up, and interactive approaches, where software engineers in-
crementally make changes to the code base to see how varying inputs
to the system change the outputs. Storey notes that program compre-
hension is not an end goal, but rather a necessary step in achieving
another goal. The types of mental models employed by programmer
differs between people, so we narrow the scope of L-Vis to prioritize
the top-down cognitive strategy. In the top-down strategy, programmers
generate assumptions about the structure and end-result of a program
and then investigate every subsection of the program with regards to
those assumptions.

Sillito et al. improve on the development of these mental models,
conducting a set of interviews to determine questions programmers
ask themselves when trying to understand a codebase [28]. While
these questions can predict the author programmer’s mental model,
their usage in practice seems impractical as it assumes a experienced
programmer’s perspective towards program comprehension.

Erdos and Sneed approach program comprehension from a program
maintenance perspective. They propose seven questions that need to be
answered for a software engineer to successfully maintain a program
that is only partially understand [12]. Some of these questions include
“Where is a particular subroutine/procedure invoked?”, “What are the
arguments and results of a function?”, and “Where is a particular
variable set, used or queried?”.

Pacione et al. refine these questions by conducting a literature review
of program comprehension, ensuring that their task set constitutes a
comprehensive range of typical software comprehension tasks [25].
They construct abstract questions that should be answered for program
comprehension such as, “What interactions occur between objects?”,
“What is the high-level structure/architecture of the software system?”
or “How do the high-level components of the software system interact?”
While this list of questions covers a large breadth of tasks, most tasks are
too broad to apply to use of visualization for program comprehension.
To narrow the scope of all the task sets that can apply to visualization in

program comprehension, we define a user group and their requirements
for a visualization system.

Unstructured User Interviews
We conducted unstructured interviews with participants of varying
coding expertise to learn about their data analysis and comprehension
workflows. Our participants included introductory programming stu-
dents, computer science graduate students and a university professor
whose research lies at the confluence of software engineering and com-
puter science pedagogy. The interviews lasted approximately 15-60
minutes. The interviews were contextual in the participants work en-
vironment where the interviewee described their workflow and tools
that they currently used to understand unfamiliar code. We corroborate
collective notes from the set of interviews to derive common high-level
tasks and themes from the interviews. Despite the range of strategies to
build cognitive models of code, similar themes of visualization require-
ments emerged. All groups believed they could effectively analyze
small snippets of code, but needed a larger representation to base their
cognitive model on. This reveals the requirement that a high-level
context view displaying a summary of available provenance data is
necessary. In addition, all participants wanted to be able to examine a
specific code snippet’s derivation in terms of dependencies and previ-
ous calls. A graduate student noted that, “tracing these relationships
[between code-snippets] can facilitate hypothesis-driven debugging.”

Based on our interviews, we present six high-level tasks that inform
the design of L-Vis:

1. Display affected code if a user changes a variable’s value.

2. Identify parts of code an external library affects.

3. Investigate specific contexts.

4. Support goal-directed, hypothesis-driven comprehension.

5. Highlight the flow of inputs to output through a script.

6. Understand syntactic and semantic relationships between vari-
ables and functions.

3.2 Language-Level Provenance
Researchers have collected provenance at various layers and granulari-
ties. We define three levels of digital provenance: system, application,
and language. CamFlow is a tool that gathers provenance at a whole-
system level. This granularity includes various kernel related entities
and activities, including inodes, messages, network packets, tasks,
users, and groups [26]. Researchers use this level for system intrusion
and fault detection. Application-level tools, such as VisTrails, assist in
workflow management [7]. They collect provenance on parameters, in-
puts, and outputs to software over multiple iterations. This information
helps users who are in an exploratory phase of their work to keep track
of their progress. While we explored the design space of these two
levels, our primary focus is on language-level provenance (LL-Prov).

Language-level provenance (LL-Prov) is a historical record of the
execution of a program at the source code level. LL-Prov contains
information at a line-by-line scale for control flow, values, types of
variables, libraries imported, and their relationships. Two tools exist
to collect provenance at a language level: noWorkflow [24] and RData-
Tracker (RDT) [18]. These tools collect provenance for Python and R,
respectively. They are intended to be used in data analysis. While users
can write programs in Python and R that do more than simply data
analysis and produce results, provenance of other execution is outside
the scope for these projects. There are also differences between the
two tools’ motivation and background. NoWorkflow does not collect
LL-Prov by default; instead, it tracks and visualizes application-level
provenance. Collecting LL-Prov requires a user to specify they want a
finer grain collection. It stores its provenance data in a local SQLlite
database with a schema defined by the authors.

In contrast, RDT is a provenance collection tool for R whose goal
is to increase scientific reproducibility. Provenance can help verify a



Fig. 3. The PROV Data Model and its implementations. As an example,
the PROV model defines the idea of activities. PROV-JSON is sim-
ply implementing the concept of activities in JSON format. Extended
PROV-JSON states that specific activities needing representation are
procedures (denoted with the tag p). Procedures correspond to units of
code, such as a single line that is executed. A full Extended PROV-JSON
example is in appendix A.

script’s result by showing how the script came to its outcome as well
as its computing environment. This tool and the output it produces is
the focus of our project. It collects LL-Prov in the form of a directed
acyclic graph (DAG) on a per-execution basis. While it is possible to
use this tool for application-level purposes like noWorkflow, RDT does
not contain this as a feature. Instead, users would have to create their
own workflow management system that uses its data. RDT has two
implementations as R packages, rdt and its subset, rdtLite. We choose
to utilize the rdtLite flavour of RDT as the rdt R package contains
additional features, tools, and dependencies that are not necessary
to purely collect LL-Prov. RDT collects LL-Prov network data in
an extended format of the W3C PROV-JSON model [13]. PROV-
JSON [15] is a serialization of the PROV Data Model defined by the
W3C [4]. This relationship is shown in Fig. 3.

The nodes in Extended PROV-JSON represent lines of codes exe-
cuted, data (such as files and variables), external libraries used, and
functions used from these external libraries. The edges represent control
flow, data flow, and connections to the external libraries. An important
fact to note is that a PROV-JSON file represents a single execution of a
script. A subsequent execution is sure to produce a different provenance
graph; at a minimum the timestamps differ. However, a possibility is
that numerical results can vary, even with the same input data. This
change can be a product of the operating system or versions of software
used [11].

The provenance graph consists of seven types of nodes and five types
of edges that form a DAG. We describe this data model here, but real
examples of LL-Prov in JSON format can be found in appendix A.

The Nodes
In a real-world data analysis the number of nodes is typically in the low
100s. There are multiple types of nodes as discussed here.

Procedure nodes represent a unit of code the script executed. Most
commonly, a unit of code is a single line that was executed at run-
time. These nodes contain information such as the code executed,
how long it took, and where the code is located in the script. In
an average script, the amount of procedure nodes will be slightly
larger than the number of lines of code. Therefore, the number

of procedures vary as much as the number of lines of code in a
script.

Data nodes represent information stored in the script, typically vari-
ables and files. They store the value (if possible), type of the
value, type of the data, and scope. In a script, the number of data
nodes will vary with the number of times a variable receives a
value and a file is read in or out.

Library nodes correspond to a package loaded into the R environment
for use in the script and its version. There are usually not many
of these nodes, as there will be one for every library imported for
the script; however, as certain packages are always included like
the base package.

Function nodes represent a function called in the script that was not
defined in the script, and therefore was taken from a package. The
number of these types of nodes will vary with how extensively
the user relies on calling functions from libraries.

The environment node holds information about where and when the
script was executed. This includes the architecture and operating
system of the computer, the path to the file, paths to relevant
directories, and how long it took to run. There will only ever be
one of these nodes per JSON file.

The agent node stores information about the versions and settings of
provenance being collected. There will only ever be one of these
nodes per JSON file.

The prefix node contains information about where the formatting of
various parts of the JSON come from. Nodes and edges will
contain a prefix that indicate whether the JSON is formatted to as
part of the PROV-JSON model, or the extension of PROV-JSON
defined by RDT. Therefore, the two prefixes will either be prov
or rdt. There will only ever be one of these nodes per JSON file.

The Edges
In real-world analyses, there are typically from the low to mid 100s of
edges.

Procedure to Procedure edges represent control flow. Essentially, in
the pair of procedure nodes p1 and p2, this edge means after
p1 executed, the next thing to happen in the script was p2. The
amount of these edges will always be equal to the number of
procedure nodes minus one.

Procedure to Data edges link data nodes to where they were first
initialized or brought into the script. The amount of procedure to
data edges should always be less than or equal to the number of
data nodes.

Data to Procedure edges correspond to where data nodes were used
after their creation. The number of these will vary greatly depend-
ing on the script.

Function to Procedure edges link function nodes to where they were
used in the script. The amount of these edges will depend on how
often functions are called from external libraries, which varies
greatly.

Library to Function edges link the R package a function node came
from. The amount of these edges will depend on how often
functions are called from external libraries, which varies greatly.

The RDT authors defined this specification derived from the PROV
Data Model as the abstraction for source code at the level of information
they are gathering. However, L-Vis and its users do not need this level of
specificity for the purposes of their tasks. We define our own abstraction
from the provenance domain based on these tasks. We do not need
every type of node in our abstraction as some nodes are intended as
metadata. Specifically, these are the prefix, agent, or environment node.



Fig. 4. To show how we filter data, the node-link diagram in (a) displays
a provenance graph where transformations are applied to two datasets
before they are combined to produce a plot. Our filtering method is
shown in (b) with the same analysis, except only the necessary data and
crash nodes are visualized.

L-Vis Data Abstraction
Actions are simply procedure nodes defined by the Extended PROV-

JSON. For the user, this data will commonly be a single line of
code executed in a script.

Objects are any sort of data that is used in an analysis. This can
represent variables, files, libraries, and external functions. Objects
can be created and used by actions.

Crash Nodes are actions nodes that use two (or more) objects and
generates a new object. This is a derived abstraction used to filter
the data to highlight the flow and interaction of data through a
script. Filtering by crash nodes are visualized in Fig. 4.

Relationships are any of the edges defined in the Extended PROV-
JSON. These connections indicate object and action generation,
usage, or chronology.

4 SOLUTION

Based on our review of prior work and informal qualitative interviews,
we developed a new browser-based visualization tool called L-Vis.
Motivated by our task requirements and issue of scale in node-link
graphs, we consider two solutions: the traditional provenance approach
of filtering a subset of “important” nodes, and a visual idiom with a
semantic layout algorithm: the hive plot [17].

4.1 Data Filtering
To reduce the scale of the visualized dataset, we choose to create an
option to filter nodes and explicitly show crash nodes. Crash nodes are
actions where two (or more) different objects are both used and a new
object is created. This process is shown in Fig. 4. By filtering all the
actions to just crash nodes, the focus of the visualization becomes the
path of data through the scripts, and how different inputs may interact
and depend on each other.

It is important to track how an analyst transforms a single dataset
through a script; however, when multiple inputs come together to
create an output, the dependencies become more complicated and

could benefit from visual assistance. Choosing to visualize crash nodes
reduces scale of provenance data: from the scale of 1000s to 10s or
100s. Based on our task requirements, we understand that users value
being able to view the entire dataset. Therefore we allow users to toggle
between a filter of the crash nodes and the full dataset, where the full
dataset leverages a separate graph layout algorithm. We acknowledge
that users may find traditional layout algorithms more accessible based
on prior work [5], but discourage users from this view as the network
structure will likely regress to a hairball [23] or be too long to fully
display.

4.2 Semantic Graph Layout: Hive Plots

An issue with graph layouts is that any inferred structures are by-
products of the layout algorithm rather than the underlying structure
of the data itself. Hive plots were designed to use a semantic layout
algorithm where all nodes are grouped onto the same axes according to
some related category [17]. Hive plots therefore encode information
into their structure, improving their expressiveness when compared to
traditional graph layout algorithms.

Hive plots group nodes onto an axis by category, such as in-node,
out-node and procedure node, by time of creation, or even by derivation.
Explicit encoding of position by category can allow readers to better
infer structure of the data while also communicating additional infor-
mation. L-Vis orders nodes along an axis by link degree; nodes towards
the center of the axes would be less connected (indicating they affect
fewer nodes), while nodes at the end of the axes would have higher
degrees of connectedness and affect many sections of the codebase.
This spatial encoding can give edges less room for occlusion.

A design choice necessary for hive plots is to choose how nodes
are grouped along axes. While this choice can be made somewhat
arbitrarily, we use our tasks to inform our design. Users noted that they
wanted to track inputs and outputs of various objects through the script.
Therefore in L-Vis we group nodes along axes categorized by inputs
and outputs. The intermediary axes denote intermediary inputs and
intermediary outputs. These are reflected into two axes, as many inputs
during the execution of a script may feed into outputs and vice-versa.
Another design decision regarding the axes is the angle orientation. For
L-Vis, we place the inputs on the axis pointing in the 12:00 direction,
and the outputs in the axis pointing in the 8:00 position. The axes
pointing towards 4:00 and 5:00 represent the data flow through the
script with the nodes mirrored across the axes. This allows users to still
read the chart somewhat from left to right in a clockwise manner, and
focuses user attention on the intermediary input/output axes.

We encode actions as yellow points and objects as blue points on
the various axes. Any relationships between nodes we encode as light
gray lines that curve towards their destination; however, if a user hovers
over a node or edge, these connections will darken as seen in Fig. 1. In
addition to bringing attention to connection, clicking a node will display
its information in the upper left corner of the main canvas. On the
right edge, L-Vis has options to filter by various types of relationships
between objects and actions.

4.3 Interface Design

We split the interface of L-Vis into three parts. The script display is on
the far left, the main canvas displaying the hive plot of the provenance
is in the middle, and optionally the PROV-JSON is on the right. We
display this layout in Fig. 5. As reading a page is commonly completed
from left to right, we choose to position the script editor far to the left,
giving the user context about the program they are trying to understand
first. The visualization is the main view, taking about 70% of the view
width. We provide a toggle to display the raw PROV-JSON collected
from the execution of the script on the far right side. While the intent of
L-Vis is to remove the need to view the PROV-JSON, we include this
view in case users desire the additional context the raw data provides.
In the upper right corner of the main canvas is a legend describing the
axes.



Fig. 5. The L-Vis interface is split into three parts: the script editor on the left, the main canvas with hive plot in the middle, and the PROV-JSON on
the right. In the hive plot, the yellow nodes represent actions. The blue nodes represent objects.

5 IMPLEMENTATION

There were two main elements to the implementation of L-Vis: the data
collection platform, containR, and the L-Vis interface itself.

5.1 Data Collection Platform

We integrated L-Vis into a prior R analysis reproducibility tool: con-
tainR2 [8]. ContainR is a service provided as a website that leverages
RDT, Docker [21], and Dataverse [16] to help archive analyses and
increase their repeatability. Fig. 6 depicts the architecture of containR.
Users can upload analyses to containR, and they have the option to
pre-process the scripts for any common errors that can occur with
these R analyses. These errors could be working directory issues or
uninstalled libraries. This method is by no means a guaranteed fix for
broken analyses, but may just unmask other problems as found by the
original author of containR [8]. If rdtLite can successfully execute
each R file in the uploaded directory, Docker bundles the scripts, data,
results, and provenance into an RStudio Server container and uploads
it to Docker Hub. When the user wants to repeat their experiments,
they can pull the container, start up the server, and execute the analysis.
Since the Docker Hub repository is public, anyone who wants to repeat
the analysis and has Docker installed can pull the container and run it,
even if they do not have R installed locally.

We wanted to use this workflow to collect provenance of analysis
scripts on Dataverse which we would use as input to L-Vis. However,
the site was never put into production. We inherited the containR base, a
Python Flask application, which unfortunately did not run to to a variety
of issues. These include deprecated dependencies, database schema
changes, lack of database at all and deprecated provenance collection
tool. To fix these bugs, we went through the tedious process of updating
Python package requirements, creating a local SQLite database to
connect to and updating the database schema. We could not find all
dependencies based on stated requirements, and instead we found them

2This section of the project was done for the purposes of CPSC 508. Had
this been for 547 alone, we would have made L-Vis a standalone tool.

through trial-and-error. The other significant change to the site that
we made was the provenance collection tool. When we inherited the
code it was using a deprecated LL-Prov collection tool. We removed it
and switched in rdtLite, which its authors are currently supporting and
updating. To provide L-Vis the most information possible, we ensured
that not only was the PROV-JSON being placed into the container,
but the entire provenance directory that rdtLite creates upon execution.
This directory includes the PROV-JSON as well as the original script.

5.2 L-Vis Interface

The L-Vis interface was implemented in Javascript using the following
libraries: D3, React, Parcel, Monaco Editor and React JSON viewer.
We used react-split-panel to layout the page although style the rest of
the page ourselves.

One main development effort was the data pipeline. For the data
pipeline, we needed to transform PROV-JSON collected by RDT into
a source-target node and link data format usable for hive plots in D3.
There were no previous examples of data transformation from PROV-
JSON to D3 readable source/destination that we could build on. There-
fore, we wrote a Python parser (convert.py) that would parse any loaded
PROV-JSON and transform the data into the source/destination node
format that D3 can use.

Another challenge was implementing hive plots in D3. There are
previous examples of hive plots. However, the majority of past exam-
ples either (a) used mock data where the information encoded was not
complex or (b) ordered nodes along the axes in a simple way. While
there is a D3 hive plot submodule, this module only contains the lay-
out algorithm and shape generation code for the links of a hive plot.
Additionally, there were compatibility issues between the code found
in previous examples. All hive plots examples used D3.v2 while we
used D3.v5. We based the skeleton of our hive plot implementation on
Mike Bostock’s example on bl.ocks.org [6], trying to change any bugs
that arose from deprecated APIs in the transition to D3.v5. In order to
determine the layout of the nodes, we computed a rank for each node
based on its in-degree and out-degree and by node type, then interpolate



Fig. 6. Dependencies and data flow within containR. Users upload analyses and data to containR (a). ContainR runs the rdtLite package to execute
scripts, store their outputs, and collect provenance (b). Upon completion, ContainR runs Docker to containerize all the scripts and data and uploads
the new container to Docker Hub where it is publicly accessible (c). Uploaded container links are displayed to users on the containR homepage
where they can visualize container contents (d) using L-Vis (e).

across the axis length according to this rank. Then, we simply allow
the D3 hive plot submodule to generate the edges between the nodes.

6 RESULTS

L-Vis can successfully help users accomplish tasks we defined for the
tool. The hive plot idiom helps address the long linear layout that is
difficult for users to parse introduced by the traditional node-link graph.
The axes are defined for best showing dataflow through an analysis.
The hive plot can still encounter the hairball problem prevalent with
network visualizations; however, our crash nodes data filter can help
control this problem for certain scripts. With all this information, L-Vis
can help users accomplish specific tasks from our requirements.

6.1 Success Scenario

A user can use L-Vis to assist them in trying to switch a deprecated
R package out for a new one. They can open the tool, find the ob-
ject corresponding to the library they need to switch out, and click it.
As shown in Fig. 1, this will highlight its connections to the objects,
functions in this case, that are from this library. They can then use
the relationships to find the actions that use those objects. Since each
of those actions correspond to a line of code, they now have all the
places in their code where that library was used. If they are concerned
about functions returning specific types of objects, they can even trace
the dataflow from the connected actions to find everywhere they may
have to account for a new type of object from the new library. This
same system can be used to track how inputs become outputs, another
defined task. Rather than clicking on a library object to start, a user can
click an input object. While all these features are shown in L-Vis, there
are still some we want to integrate.

6.2 Informal Qualitative Feedback

In an ideal world with additional resources and time, we would run a
formal quantitative user study where we compare L-Vis to alternatives,
like DDG Explorer.3 However given the time constraints and scope
of the course, we asked for feedback from our CS graduate peers who
kindly volunteered their time to use and critique L-Vis. We asked
participants to be somewhat familiar with the R programming language
as minimal background knowledge for the study. All participants used

3This qualitative evaluation was a component required for CPSC 508. We
add this section to this paper for completeness.

the same Macbook Pro 13” laptop running macOS Mojave and track
pad to navigate DDG Explorer and L-Vis.

Participants were given a scenario where a package dependency
had changed and they would have to replace the package. The dataset
used was scraped from Harvard Dataverse [16], a archival service for
scientific analyses, and was a simple script drawing a line plot for the
result of a scientific analysis.

During the feedback, participants are asked to speak-aloud their
process so that the observers would be able to better understand how
participants were developing their cognitive models of the analysis
code. Having participants verbalize their process was important for
allowing us to assess participant usage of L-Vis’.

We asked 3 of our peers to use L-Vis. They provided feedback that
will be used in the next iteration of L-Vis, such as the addition of linking
highlighting between the visualization and code snippets. For example,
a peer noted that, “it helped a bit, but more functionality has to be built
before I would consider using it for something useful.” Ultimately, this
cannot take the place of a formal user study, however has helped begin
an iterative design process to eventually converge on a better solution
that might include L-Vis.

6.3 Limitations
L-Vis has some drawbacks from lack of implemented features as well
as the nature of the data and tasks. There are a few features that
we would have implemented given more time. For example, in the
previous scenario with replacing a deprecated library the user could
benefit from bi-directional highlighting. When a user clicks on a library
object, it would be useful to have a feature that would trace all the
relationships previously described and map them to the corresponding
line numbers in the script editor. These lines would then be color
encoded to highlight them as the relevant code blocks. Since this
system would be bidirectional, the same would go in reverse. A user
could click on a line and L-Vis would highlight all the related nodes
and edges. Additionally, we could expand and update the label system.
Currently the nodes still display the PROV-JSON prefixes, prov and rdt
before each node. This is metadata not useful to the user when they’re
trying to comprehend a program and we could filter them out.

7 DISCUSSION AND FUTURE WORK

Taken as a whole, the results from our user study show that L-Vis’ new
visual idiom and additional tools led to more accurate tasks completion



and higher qualitative results than alternatives such as DDG Explorer.
The hive plot, while initially hard to learn, encoded semantic informa-
tion meaningfully for users through position, and thus was preferable to
the traditional node-link graph diagram represented in DDG Explorer.
The qualitative results supported this, showing a significant effect size
of preference to L-Vis over DDG Explorer.

Through the use of the hive plot visual idiom, L-Vis is less suscep-
tible to the scalability hairball problem encountered when visualizing
large graphs. DDG Explorer encounters scalability issues, although not
always due to a hairball. Long scripts have a linear structure due to the
nature of the DAG. DDG Explore will then only be able to visualize
small sections of the graph legibly. L-Vis can handle the long linear
structure of the graph, but can still encounter the hairball at hundreds of
nodes. However a user filtering by crash nodes can reduce the problem
while still preserving the structure of data flow. In addition to scalabil-
ity, L-Vis helps keep the users oriented with their script by displaying
it in a window next to the visualization canvas. The platform of L-Vis
also allows it to be accessible as long as someone has a modern web
browser.

We acknowledge that the tasks conducted in the study might not
be representative of common tasks in scientific analysis. In particular,
this would be strengthened by conducting an initial pilot assessing a
representative set of tasks that demonstrate programmers true work-
flows when attempting to interpret an unfamiliar script. In addition,
the targeted user group and participant pool was slim, reducing the
generalizability of our results.

Finally, while we tried to counter learning effects, it is possible that
prior experience with analysis, provenance, or reproducibility could
have confounded the results of our study. A large sample size would
certainly help counter-balance these effects and we strive to complete a
larger user study in the future, directly evaluating and reproducing the
effects found in this study.

7.1 Generalization to Other Provenance
We designed L-Vis specifically for the tasks we defined in our informal
interviews. Therefore, the infrastructure of L-Vis might not generalize
to other forms of provenance immediately. For example, the axes of
the hive plot are defined in a way that makes sense for a provenance
graph representing an R analysis script. The plot starts with data inputs,
and end with data outputs. We derive crash nodes as a data abstraction
and way of filtering nodes while maintaining data flow. Crash nodes
may not hold the same value for system or application level provenance.
However, with effort, the L-Vis concept could be implemented for other
forms.

The hive plot idiom could be used for other scales. To address
issues like the hairball, new ways of aggregating or filtering may be
necessary. For example, the time-based hierarchy defined for use in
InProv could be applied to L-Vis. However even with additional filters
or aggregations applied, the axes and what they represent will need to
be defined for these other levels.

7.2 CPSC 508 vs 547
If L-Vis were a project just for CPSC 547, we would not specify
containR as the platform for our visualization. Rather, we would
have created a standalone tool that uses Extended PROV-JSON as its
input. We also would have focused on comparisons between additional
visual idioms, like traditional node-link graph layouts or radial layouts.
Specifically, we would have implemented these other idioms within
L-Vis and let users toggle between them in the interface.

If L-Vis was a solo project for CPSC 508, we would describe less
work of the domain/task abstraction and more in the work to update
containR and ensure compatibility with supported provenance collec-
tion tools. Extending containR to add L-Vis was necessary to add a
more systems-like component to the project. In this paper we refer to
various nodes in their abstracted form: actions, objects, relationships,
and crashes. If just in CPSC 508, we would describe these in the
domain-specific setting.

It is important to note that regardless of the class, we still would
have conducted unstructured interviews with stakeholders. This was

a key step in understanding the requirements of our target users and
defining tasks (domain specific or not) that L-Vis should help support.
When corroborated with prior work in program comprehension, this
led to the requirements list which could be further task-abstracted for
547.

8 CONCLUSIONS

We define a set of domain and task abstractions for language-level
provenance and present L-Vis as an alternative tool to visualize LL-
Prov in a comprehensible form. We find that users qualitatively prefer
L-Vis to DDG Explorer and while users expressed initial confusion
interpreting the hive plots in L-Vis, believe hive plots to be more visu-
ally effective than their alternatives. While not directly generalizable to
other levels of provenance, L-Vis has the potential to be applied to other
scales with some consideration made of data and task abstractions.

L-Vis is still in development; we are constantly adding tools to im-
prove the feature set. Based on the feedback and results from our user
study, we aim to continue development on L-Vis where it can be inte-
grated into containR. In particular, we target how to make L-Vis more
accessible in users’ current workflows for analysis and reproducibility.
We understand that users desire as little intrusion into their current
workflows as possible and seek to make L-Vis as painless as possible
to use.

Furthermore, we plan to incorporate multiple graph layouts in L-
Vis for LL-Prov. By implementing multiple idioms, we can directly
compare L-Vis’ hive plots to other visual representations such as a
radial layout for LL-Prov adapted from InProv [5]. The design space
of alternative visual encodings for provenance information is slim and
comparisons between novel visualization types have not been explored
and evaluated yet. We believe future work in this domain has promise
to determine the most effective visual idiom for LL-Prov. Finally, while
we opted to filter LL-Prov to visualize crash-nodes, we plan to test
L-Vis on larger dataset sizes where crash-nodes exceed the number of
a few hundred.

We hope that providing an intuitive summary of code-structure in
scientific analyses with L-Vis allows users to more effectively generate
cognitive models of code they are unfamiliar with. Our goal is to align
these mental models with those of the original author. We also hope
that students who inherit spaghetti ”grad-student code“ will be able to
make sense of it through L-Vis.
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Appendices
A LL-PROV JSON FORMAT

A.1 Procedure Node

1 {"rdt:p2": {
2 "rdt:name": "my.func <- function(x) {x

* x + 5}",
3 "rdt:type": "Operation",
4 "rdt:elapsedTime": "0.132",
5 "rdt:scriptNum": 1,
6 "rdt:startLine": 1,
7 "rdt:startCol": 1,
8 "rdt:endLine": 1,
9 "rdt:endCol": 33

10 }}

A.2 Data Node

1 {"rdt:d2": {
2 "rdt:name": "foo",
3 "rdt:value": "10",
4 "rdt:valType": "{\"container\":\"

vector\", \"dimension\":[1], \"
type\":[\"numeric\"]}",

5 "rdt:type": "Data",
6 "rdt:scope": "R_GlobalEnv",
7 "rdt:fromEnv": false,
8 "rdt:hash": "",
9 "rdt:timestamp": "",

10 "rdt:location": ""
11 }}

A.3 Library Node

1 {"rdt:l1": {
2 "name": "base",
3 "version": "3.6.1",
4 "prov:type": {
5 "$": "prov:Collection",
6 "type": "xsd:QName"}
7 }}

A.4 Function Node

1 {"rdt:f1": {
2 "name": "read.csv"
3 }}

A.5 Environment Node

1 {"rdt:environment": {
2 "rdt:name": "environment",
3 "rdt:architecture": "x86_64",
4 "rdt:operatingSystem": "linux-gnu",
5 "rdt:language": "R",
6 "rdt:langVersion": "R version 3.6.1 (2

019-07-05)",
7 "rdt:script": "/home/User/Documents/

ProvData/example.R",
8 "rdt:scriptTimeStamp": "2019-12-06T14.

02.07PST",
9 "rdt:totalElapsedTime": "1.164",

10 "rdt:sourcedScripts": "",
11 "rdt:sourcedScriptTimeStamps": "",

12 "rdt:workingDirectory": "/home/User/
Documents/ProvData",

13 "rdt:provDirectory": "/home/User/
Documents/ ProvData/prov_example",

14 "rdt:provTimestamp": "2019-12-06T14.02
.35PST",

15 "rdt:hashAlgorithm": "md5"
16 }}

A.6 Agent Node

1 {"agent" : {
2 "rdt:a1": {
3 "rdt:tool.name": "rdtLite",
4 "rdt:tool.version": "1.1.1",
5 "rdt:json.version": "2.3",
6 "rdt:args.names": [
7 "overwrite",
8 "details",
9 "snapshot.size",

10 "save.debug"
11 ],
12 "rdt:args.values": [
13 "TRUE",
14 "TRUE",
15 "10",
16 "FALSE"
17 ],
18 "rdt:args.types": [
19 "logical",
20 "logical",
21 "numeric",
22 "logical"
23 ]
24 }
25 }}

A.7 Prefix Node

1 {"prefix": {
2 "prov": "http://www.w3.org/ns/prov#",
3 "rdt": "https://github.com/ End-to-end

-provenance/ ExtendedProvJson/blob
/master/ JSON-format.md"

4 }}

A.8 Procedure to Procedure Edges

1 {"rdt:pp1": {
2 "prov:informant": "rdt:p1",
3 "prov:informed": "rdt:p2"
4 }}

A.9 Procedure to Data Edges

1 {"rdt:pd1": {
2 "prov:activity": "rdt:p2",
3 "prov:entity": "rdt:d1"
4 }}

A.10 Data to Procedure Edges

1 {"rdt:dp1": {
2 "prov:entity": "rdt:d1",
3 "prov:activity": "rdt:p5"
4 }}



A.11 Function to Procedure Edges

1 {"rdt:fp1": {
2 "prov:entity": "rdt:f1",
3 "prov:activity": "rdt:p5"
4 }}

A.12 Library to Function Edges

1 {"rdt:m1": {
2 "prov:collection": "rdt:l9",
3 "prov:entity": "rdt:f2"
4 }}
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