
L-Vis: Visualizing Language-Level
Provenance for Program
Comprehension

Joe Wonsil and Francis Nguyen
December 10th, 2019
CPSC 547 Final Project

Driving Scenario: Grad Student Code

● A new graduate student inherits (messy) code for data analysis and must
understand how to use and alter the scripts.

● Goal: build mental model of unfamiliar code.

○ Useful information can include library dependencies and their usage, understanding
how variables change over time and the relationship between inputs and outputs of
the analysis code.

● L-Vis visualizes relationships in the code structure of R scripts to help users
understand unfamiliar code.

2

Requirements & Tasks
We conducted unstructured interviews to understand how program comprehension and
visualization interact.
● Participants: software engineering professor, peer CS graduate students, and

introductory CS undergrads.

Their responses helped define tasks L-Vis should consider in its design.
● Locate: Identify parts of code an external library affects.
● Locate: Display affected code if a user changes a variable’s value.
● Present: Highlighting the flow of inputs to output through a script.

These tasks can be fulfilled by provenance.

3

Provenance is an object’s history represented as a directed acyclic
graph (DAG), which consists of nodes and edges.

● This conceptual specification is defined by the W3C PROV Data Model1
(a standardized model agnostic of level and implementation).

4

 Application Language System
1. Khalid Belhajjame, Reza B’Far, james Cheney, Sam Coppens, Stephen Cresswell, Yolanda Gill, Paul
Groth, Graham Klyne, Timothy Lebo, Jim McCusker, and et al. PROV-DM: The PROV Data Model.

Focus: Language-Level Provenance (LL-prov)
Scale: Line by line source-code level. For L-Vis, the language is R.

LL-Prov contains information about a past execution including:

● External library dependencies.

● Function calls.

● How inputs interact to create outputs.

RDataTracker (RDT)1 is an R package that collects LL-Prov.

● Generates PROV-JSON2 file of nodes/edges which is a serialization of the

PROV Data Model.

● PROV-JSON is the input to L-Vis.
5

1. B.S. Lerner and E.R. Boose. Rdatatracker and ddg explorer. In Ludäscher B., Plale B. (eds) Provenance and
Annotation of Data and Processes (IPAW 2014), volume 8628, pages 288–290, 2015
2. Trung Dong Huynh, Michael O. Jewell, Amir Sezavar Keshavarz, Danius T. Michaelides, Huanjia Yang, and Luc
Moreau. The PROV-JSON serialization, 2013.

Our Tool: L-Vis

6

Motivation for Visualization of Provenance
● Not easy for a user to directly read the provenance and parse this

information — without visualization, would have to parse lines of JSON.

● Typically visualized as a node-link graph, such as RDT’s DDG Explorer.

7B.S. Lerner and E.R. Boose. Rdatatracker and ddg explorer. In Ludäscher B., Plale B. (eds) Provenance and
Annotation of Data and Processes (IPAW 2014), volume 8628, pages 288–290, 2015

Issue: Scale

8

Images example of existing LL-Prov visualization tool: DDG Explorer.

B.S. Lerner and E.R. Boose. Rdatatracker and ddg explorer. In Ludäscher B., Plale B. (eds) Provenance and
Annotation of Data and Processes (IPAW 2014), volume 8628, pages 288–290, 2015

2 lines of code
12 Nodes, 8 Edges

180 lines of code
267 Nodes, 435 Edges

Data Abstraction — Nodes / Edges

Prov Data Model

“Entities”

“Activities”

9

PROV-JSON

Data node
Library node
Function node

Procedure node

Fully Abstracted

Objects:
Variables, external
dependencies, files (I/O)

Actions:
Executed code segment,
typically a single line

Indicate action chronology, object creation, and object usage
“Node (a) occurred before Node (b)”

NODES

EDGES

Data Abstraction Cont.

10

Fully Abstracted

Objects:
Yellow Nodes

Variables, external
dependencies, files (I/O)

Actions:
Blue Nodes

Executed Code Segments

Data Abstraction Cont.

11

Derived Attribute

Crash Nodes:
An action that produces
a new object by using
two or more existing
objects

Without crash nodes With crash nodes

L-Vis Demo

12

● Resources are limited. Not enough pixels, but also direction and hierarchy
along hive plot axes have limitations.

● Are these the most elegant encodings? User study is necessary to evaluate
effectiveness of idioms.

● L-Vis uses PROV-JSON as its input. Trade-Off: More specificity in schema, but
code needs to be updated if schema is updated.

Limitations

13

Future Work
In the very near future (for CPSC 508):

● Fully integrate L-Vis into existing reproducibility tool containR
● (Less rigorous) Qualitative study with our peers to evaluate L-Vis

On the horizon:

● Additional visualization idioms: Allow users to toggle traditional network
layouts or radial layouts

● User interviews to derive tasks from users and get iterative feedback
● Quantitative study to compare L-Vis to other LL-prov tools

14

Questions?

15

L-Vis: Visualizing Language-Level Provenance

https://www.youtube.com/watch?v=u9sRJ-eOHnc

