
ShakesPeer: A Tool for Visualizing Character Relationships in
Shakespearean Literature

Mint Tanprasert, Frances Sin, and Kevin Chow

Fig. 1: Overview of ShakesPeer for visualizing A Midsummer Night’s Dream consisting of (a) the Character Overview, (b) the
Character-Pair view and (c) the Sidebar menu.

Abstract—ShakesPeer is an open-source, interactive tool that visualizes character-to-character relationships in Shakespearean
literature. It supports in-depth analysis of sentiment dynamics between characters, allowing users to identify influential moments in the
narrative as well as a character’s friends and enemies at different points in the story. ShakesPeer provides two main views: (1) the
Character Overview, which spatially maps out the connections between every character in a play, and (2) the Character-Pair view,
which provides detailed information about the development and flux of sentiment between each pair of characters over the course of
the story.

1 INTRODUCTION

Character relationships are, in many ways, central to the development
of any story. This is particularly true for Shakespearean plays, which
often consist of rich, faceted characters with dynamic inter-character
relationships. Visualizing these relationships can help readers develop
a more nuanced understanding of the story and uncover insights that
may not be obvious from reading the text alone.

We propose a new tool, ShakesPeer 1, which visualizes relationships
between Shakespearean characters. By analyzing the dialogue from a
play, we can derive attributes such as character-to-character sentiment
and engagement. We hope that ShakesPeer will help readers gain a
better understanding of the plot, in particular related to the characters,
and provide a starting point for deeper literary analysis. For the scope of
our work, we focus only on visualizing Shakespeare’s famous comedy,
A Midsummer Night’s Dream. However, ShakesPeer is not tailored to
any specific characteristics of this play and has sufficient scalability
to visualize any other plays by Shakespeare as well as plays by other

• Mint Tanprasert, Frances Sin, and Kevin Chow are MSc students in
Computer Scinece at the University of British Columbia. Their emails are:
{tt1996, francsin, kchowk}@cs.ubc.ca.

ShakesPeer (2019) is a project for CPSC 547: Information Visualization.

1https://github.com/kevin-chow/ShakesPeer/

authors of similar format.
In Section 2, we will discuss previously existing work about visu-

alization of Shakespearean texts and sentiment analysis. In Section 3,
we will describe our data as well as the data and task abstraction. In
Section 4, we will present our visualization solution. Then, in Section 5,
we will describe the implementation process as well as the contribution
of each participant in the project. In Section 6, we will present our
result based on scenario use. Finally, in Section 7, we will discuss the
challenge in our design process, the strengths and limitations of the
tool, and possible future extensions of the project.

2 RELATED WORK

2.1 Digitized Shakespearean texts
Shakespearean texts have been a popular source for machine analysis
and visualization for two reasons. Firstly, its drama script format makes
it easy to identify the hierarchical structure of the text. The script also
simplifies character-based analysis, since each speech has an explicit
character label. Another reason is that the original Shakespearean
texts have been thoroughly aggregated, annotated and converted into a
digital format, making it a convenient source of data to manipulate and
analyze. Some examples of such collections include the Folger Digital
Texts 2 project, which provides complete TEI-annotated Shakespearean

2https://www.folger.edu/folger-digital-texts

https://github.com/kevin-chow/ShakesPeer/
https://www.folger.edu/folger-digital-texts


plays, and Open Source Shakespeare (OSS) 3, which provides statistical
features and keywords search on Shakespearean texts.

2.2 Visualization of Shakespearean texts

Shakespeare’s play scripts have been visualized in three main ways: text
navigation, word-based visualization, and character-based visualization.
For text navigation, the related tasks are comparison between different
versions of text, such as between different translations [2], and explo-
ration of specific parts of the text, taking into account its positioning
in the whole script [3]. Word-based visualization is mostly done in the
form of speech distribution visualization. Zakovich orders the speech
distribution per scene of the two most important characters in each
Shakespeare’s story in circles. Other kinds of word-based visualization
include text collages, where the size of a word encodes its frequency
in the story, and scatterplots of words, showing their correlations and
similarity [13]. Character-based visualization are often presented as
node-link networks of character co-occurrences in a scene. Grandjean
creates such networks for each one of Shakespeare’s tragedies, allowing
high-level comparison of network structures between stories [3]. Rather
than looking at character co-occurrences, ShakesPeer’s node-link visu-
alization is based on the conversations between characters. If a pair of
characters appear in the same scene but do not speak with each other,
there is no link in between them.

2.3 Sentiment Analysis

Sentiment analysis is a text analysis technique, which is widely used
to process fictional texts. For Shakespearean texts in particular, Nal-
isnick et al. performs sentiment analysis on every pair of character
in Hamlet and Macbeth and creates a node-link network of characters
where each link is color-coded as green, if the two characters share a
“good/positive” relationship, and red for the opposite [9]. Sentiment
analysis can also shown progression of the story as a whole, indepen-
dent of each character’s contribution. This technique has been applied
to all Tolkien’s work [5]. Finally, word emotion classification is very
similar to sentiment analysis, albeit with more categories of outputs
(specific emotions instead of positive versus negative). Mohammad
uses this technique to process Hamlet (tragedy) and As You Like It
(comedy) and shows how emotions change across time for different
genres of Shakespearean texts [7]. For our visualization, we closely
follow the aforementioned approach of Nalisnick et al. by perform-
ing sentiment analysis on each pair of characters who interact in A
Midsummer Night’s Dream [9].

3 DATA AND TASK ABSTRACTIONS

3.1 Domain Background

We focus on A Midsummer Night’s Dream as an exemplary piece
of Shakespearean literature that our tool can support. A Midsummer
Night’s Dream is a comedy written in 1595 that involves multiple
interconnecting plots, weaved together by the wedding celebration of
Theseus and Hippolyta. We decided to choose this play because of its
popularity and plot, which involves complex, changing relationships
between its characters who frequently fall in and out of love with each
other. This type of dynamic storyline would best demonstrate the
usefulness of ShakesPeer.

The raw data consists of the full script of A Midsummer Night’s
Dream, collected from Folger Digital Texts. This play has five acts with
nine scenes. There are two scenes per act, except for the last act (Act
5), which only has one scene. In total there are 605 speeches, 2290
lines, and 16,511 words, with an average of 27.29 words per speech. A
speech refers to a sequence of words spoken by a character, which can
consist of either a single word or multiple lines of words in a soliloquy.
There are 23 characters, and 71 pairs of characters who have some
speech towards one another. Character pairs can either be one-way or
two-way. One-way pairs are when character A talks to character B, but
B does not talk to A. Two-way pairs are when both A and B have some
speech directed towards the other.

3http://www.opensourceshakespeare.org

Table 1: Summary of all Data Attributes.

Attribute Name Attribute Type Description
Character name Categorical The name of a character.
Character type Categorical Label assigned to a character’s role,

consisting of: lover, actor, fairy, and
other.

Scene number Ordered
(ordinal)

Ranges from 1 to 9, corresponding
to Act 1, Scene 1 to Act 5, Scene 1.

Sentiment Ordered
(quantitative,
diverging)

The summation of sentiment scores
(per word, according to the selected
lexicon) of all speeches from a speaker
to a recipient for a scene or a set of
scenes.

Character-to-character
engagement

Ordered
(quantitative,
sequential)

The summation of the total number
of words in all speeches from a speaker
to a recipient in a scene or a set of scenes

Overall engagement Ordered
(quantitative,
sequential)

The summation of the total number
of words spoken by a speaker in a
or a set of scenes

3.2 Data Abstraction

We will break down A Midsummer Night’s Dream into two dataset
types: (1) a network for character relationships and (2) a table for per-
scene information, such as character word counts. All data attributes
are also summarized in Table 1 for ease of reference.

3.2.1 Character Relationship Network

In the character relationship network dataset, the nodes are characters,
and the links between them encapsulate sentiment and engagement
data for each scene. Each node has two attributes: character name
and character type. Each link in the network has a list of data items,
one per scene. Each item in the list has five types of attributes: scene
number, sentiment and engagement of character A towards character
B and the sentiment and engagement of B towards A (if the link
represents a two-way pair).

Character name is categorical with 23 unique levels, each corre-
sponding to one of the characters in the story.

Character type is also categorical, with 4 unique levels, each cor-
responding to the character’s role in the play (lover, fairy, actor, or
other). This was manually annotated based on prior knowledge about A
Midsummer Night’s Dream.

Scene number was captured as an ordinal attribute, which ranges
from 1 (representing Act 1, Scene 1) to 9 (Act 5, Scene 1).

Sentiment was captured as an ordered, quantitative, but diverging
attribute, with a range of -15 to 15, based on the Bing Liu sentiment
lexicon [6]. This range is specific to A Midsummer Night’s Dream, as
it is calculated based on speech from that play. Negative numbers are
negatively valenced and positive numbers are positively valenced.

Character-to-character engagement represents the total number
of words that a character speaks to another. For engagement, direction
matters, as the amount of words that A speaks to B will likely be differ-
ent from B to A. This attribute was captured as an ordered, quantitative,
and sequential attribute, and may range from 0 to 16,511 (the total
number of words in A Midsummer Night’s Dream).

3.2.2 Per-Scene Data Table

Information for each scene was captured in a simple flat table, where
each row of the table represents a scene in the story. The key of
the table is an explicit scene number attribute, similar to the one in
the character relationship network. The value attributes of the table
include the overall engagement of each character in that particular
scene. Because there are 23 characters in A Midsummer Night’s Dream,
each row has 23 value attributes.

For each character, we calculated their overall engagement by sim-
ply summing up the number of words of their speech. In contrast to
the character relationship network, where the character-to-character
engagement was directed towards a particular character, overall en-
gagement ignores who the speech was directed to. However, overall
engagement is also ordered, quantitative, and sequential, and shares
the same range of values as character-to-character engagement.

http://www.opensourceshakespeare.org


Table 2: Summary of the What-Why-How analysis of ShakesPeer.

System ShakesPeer
What: Data Network, flat table
What: Derived 2 ordered key attributes, 1 categorical attributes,

2 quantitative attributes (1 diverging, 1 sequential)
Why: Tasks Discover, compare, identify, summarize
How: Encode Node-link graph, Grouped bar charts
How: Manipulate Select, hover, linked highlighting
How: Facet Small multiples
Scale 23 characters, 71 character pairs, 9 scenes, 605 speeches,

and 16,511 words

3.3 Task Abstraction
ShakesPeer supports four main tasks, which are as follows:

• T1: Discover how sentiment and engagement between a pair of
characters changes throughout the course of the play.

• T2: Compare the relationships between a pair of characters (e.g.,
A-B and B-A) or across several pairs of characters (e.g., A-B and
C-D) in terms of sentiment and engagement.

• T3: Identify key points in the story where major changes in
relationships occur (in terms of sentiment and/or engagement).

• T4: Summarize a scene or a set of scenes by providing an
overview of all the characters’ relationships towards one another.

4 SOLUTION

In this section, we describe our visualization solution and analyze it
using the What-Why-How framework from Visualization Analysis and
Design [8]. The summary of the analysis is shown in Table 2. Shake-
sPeer consists of two main views: Character Overview and Character-
Pair view. The Character Overview is designed to provide a overview
of all character relationships in the play or in a scene of the play. The
Character-Pair view is designed to provide a detailed temporal view
into the relationship between pairs of characters with sentiment values
and engagement counts between each pair in each scene.

4.1 Character Overview
The Character Overview consists of two main components: the node-
link graph and the Sidebar menu. In the node-link graph, each node
represents a character and each directed link represents the existence of
engagement between two characters as shown in Figure 3 The default
graph gives an overview of engagement and sentiment data from every
scene for every character. Although there are only 23 characters in A
Midsummer Night’s Dream, other Shakespearean plays could have up
to over 60 characters, which could lead to an explosion of character re-
lationships, and consequently, links in the graph. Therefore, to mitigate
the “hairball effect”, the Sidebar menu was added to allow the user to
filter the graph to only look at specific scenes or characters. The user
can select a subset of scenes or character types that they would like
to include or exclude. Moreover, to assist the user in quickly finding
interesting information, a list of all characters in the Sidebar is also
filtered based on the scene and character type selection. It can be sorted
according to outward engagement, outward sentiment, or inward senti-
ment, summed across only the selected scenes, in both descending and
ascending order. Due to screen real estate constraints, the default list of
characters shows only the top 5 characters from the sorted list, but the
user can also expand the list to view all characters.

The nodes in the node-link graph are size-coded based on their over-
all engagement to all other characters in the selected scene/character
type (i.e., filter window). The radius is linearly scaled by engagement,
which is normalized across the selected window so that the minimum
and maximum node sizes are the same for every network displayed.
The nodes are also color-coded by character type. The categorical color
scheme is derived from Vega. 4

4https://vega.github.io/vega/docs/schemes/

The links are rendered as tapered curvatures to indicate the direction
of the relationship. The smaller end is attached to the speaker and the
wider end to the recipient. Although we explored several directed-edge
representations, including standard arrows and multicolored links, we
ultimately decided on a tapered representation based on the findings
from Holten et al [4]. Since many pairs of nodes have a bidirectional
relationship (i.e., one link from A to B and one from B to A), we
used curved edges, rather than straight ones, to clearly distinguish and
minimize overlap between incoming and outgoing links. Like the size
of the nodes, the thickness of the links encode the character-to-character
engagement of that particular relationship. Thickness is normalized
across the selected filter window.

The links going out of a node are assigned colors based on the
average sentiment valence of the relationship in the selected filter
window. If only one scene is selected, then the sentiment is simply the
sentiment for that scene. The colour of each link encodes the character’s
sentiment towards the other, using a five-bin red-blue diverging colour
scheme: bright red (very negative), red, gray (neutral), blue, and bright
blue (very positive). When no links are selected or hovered over, all
links are light grey, as we chose not to display the sentiment encoding
by default. This was deliberate as we felt like the node-link graph was
too messy with all links coloured by sentiment.

The colours of the links are displayed via the two main interactive
functionalities in this view. First, hovering: while the user hovers over
a node, the links will be coloured according to the sentiment values.
Second, selecting a node (by clicking): when the user clicks on a node,
the links will be coloured and the outline of the selected node will be
bolded, until the node is deselected (on another click).

4.2 Character-Pair View
We initially considered several possibilities for the Character-Pair
view. Our first idea was to use scatter plots with shape-coded point
marks (e.g., circle and triangle) for each character in a character pair,
with the x-axis representing the scene number and a diverging y-axis
representing the sentiment valence. The advantage of this approach is
that the point mark can also be size-coded to encode the character-to-
character engagement in each scene. This representation would enable
the change in engagement across scenes to be conveniently presented.
However, we realized that the sentiment valence data turned out to
be very sparse (i.e., most character pairs only had one or two scenes
with data), and therefore the choice of these design idioms would make
it difficult to track changes in sentiment from scene to scene. This
was especially difficult when dots were far apart (e.g., if characters
interacted only in Act 1, Scene 1, and then in Act 5, Scene 1). We
considered fixing this by interpolating between marks by drawing a
line to better visualize the change in sentiment. However, because our
sentiment data was discretized per scene, drawing a line across scenes
with no data was misleading: it implied that there was some specific
sentiment valence when in fact there was none.

In our final design, the Character-Pair view consists of small multi-
ples of grouped bar charts. Each chart shows the sentiment valence at
each scene, demonstrating the development of the relationship between
a pair of characters throughout the play. It contains two grouped bars,
encoding the two possible directions of a relationship, with the x-axis
and y-axis encoding the same information as in the original design. The
background of the charts are coloured in light grey for scenes in which
the two characters have zero engagement. To support more dense small
multiples, we decided to remove ticks from the x-axis which would
have signified the scene number. Instead, we render small dotted lines
in the background of each chart that delimit scenes.

A Midsummer Night’s Dream consists of 71 two-way pairs of char-
acter interactions. The small multiples are sorted so that the most
“interesting” (largest total absolute sentiment valence) ones are at the
top. By default, character pairs that consist only of one-way interac-
tions (i.e. A talks to B, but B never talks to A) are hidden, as they are
less likely to provide interesting insights about the story. This reduces
the list of small multiples to be rendered to 23.

After analyzing the sentiment valence values, we decided to visualize
them without normalization. This caused a problem in determining

https://vega.github.io/vega/docs/schemes/


Fig. 2: The Character-Pair view. The six plots represent six pairs of
characters with the highest total absolute sentiment valence. When the
cursor is hovered over a chart, a tooltip pops up displaying relevant
information like the scene of interest, sentiment, and engagement.

the range of the axis. Initially, we scaled the y-axis according to the
minimum and maximum sentiment valence for each specific pair of
characters. However, these dynamically scaled axes made it difficult
to compare between different character pairs. Therefore, we decided
to use only sentiment data calculated with the Bing Liu lexicon and
fixed the y-axis for every pair to range from -15 to 15, which was
calculated based on the overall minimum and maximum sentiment.
We used a diverging axis with 0 at the middle as sentiment was also a
diverging attribute, making it easy for the user to determine positiveness
or negativeness of the value at a glance.

For each chart, the color of the left bars is dark grey, and the color
of the right bars is medium grey. The titles of the bar charts are in
the form A←→ B. The dark grey bars encode sentiment from A to B
and the medium grey from B to A. Because the y-axis does not have
fine-grained ticks, we added a tooltip, which allows the user to see
the specific sentiment values that the bars represent, as well as the
corresponding engagement, through a mouse hover. Figure 2 shows the
first six plots in the Character-Pair view with the cursor hovering over
the sixth column (Act 3, Scene 2) of the chart titled LYSANDER←→
HERMIA.

4.3 Interactions Across Views
ShakesPeer has three interactions that propagate across views, which
take the form of shared filtering and linked highlighting.

1. When a subset of scenes or character types are selected for filter-
ing via the Sidebar menu, the Character Overview’s node-link
graph and the Character-Pair view will be updated to include only
characters that satisfy the filtering options.

2. When a character is selected in the Character Overview, only
the charts of the selected character’s relationships are shown in
the Character-Pair view. If multiple nodes are selected, then the
Character-Pair view shows the charts of all pairs with at least one
selected character.

3. When a character is hovered over in the Character Overview,
charts of the hovered character’s relationships are highlighted in
the Character-Pair view.

5 IMPLEMENTATION

ShakesPeer’s implementation involves three key steps: (1) pre-
processing the play script, (2) performing character-to-character sen-
timent analysis, and (3) building the web app itself. We first describe

Table 3: Distribution of work across all team members, in percentages.

Task Frances Kevin Mint
Data Pre-Processing 40% 0% 60%
Sentiment Analysis 0% 0% 100%
Character Overview Implementation 100% 0% 0%
Character-Pair view Implementation 0% 90% 10%
Sidebar Implementation 0% 70% 30%
Report and Presentation 30% 20% 50%

our methods for pre-processing and sentiment analysis (1+2), and then
discuss the details of how we implemented the visualization and web
app (3). The distribution of work across team members is presented in
Table 3.

5.1 Pre-processing and Sentiment Analysis
The raw data from Folger Digital Texts is a text file containing a list
of all the characters, act markings, scene markings, speakers of each
speech, and the speeches themselves. First, we manually assigned a
character type to each character, based on existing knowledge about the
play’s plot. Then, we extracted each speech with the assumption that
the content of the speech is directed to the character spoken right before
it [9]. However, we found that this method was inaccurate in many
cases, especially in scenes where many characters are simultaneously
present. Therefore, we went through the data and manually corrected
the recipient of each speech to calculate the sentiment more accurately.

To perform sentiment analysis in Python 3, we experimented with
two lexicons: AFINN [10] and Bing Liu [6]. AFINN has an existing
Python library, which can score a speech (from a word to multiple sen-
tences) by accumulating the score of each word. Bing Liu lexicon can
be downloaded through the Natural Language Toolkit, but we needed
to implement the scoring function by ourselves. While calculating
sentiment analysis, we also calculated the engagement towards another
character based on the number of words in each speech directed to that
character. Finally, we stored this derived data in a TypeScript dictionary.
The key of the dictionary is a string in the form “A-B”, where A and B
are names of two different characters. The value of the dictionary is a
list of tuples, where each tuple corresponds to a scene, and the values
in the tuples are the sentiment from A to B and the engagement of A to
B in that scene.

5.2 Visualization and Web App
The visualization loosely follows the popular MEAN stack 5 for build-
ing web apps. The back-end, built with Node.js 6 and Express 7,
is responsible for statically serving the front-end components to be
viewed in the browser. Our original intention was to follow the MEAN
stack and use MongoDB 8 as our database solution. However, due
to time limitations and to support prototyping, we decided to instead
load our pre-processed data directly into memory as Javascript objects.
A complete pipeline would involve storing the pre-processed data in
MongoDB, and having the back-end serve the data through endpoints
to the front-end.

The front-end was built with the AngularJS framework 9 and styled
with Bootstrap 10. The visualization components were built directly
with D3.js 11. We did not use any additional libraries or toolkits that
build on or extend D3.js. Using the Angular framework, we split our
application into 3 major components: Sidebar, Character Overview,
and Character-Pair view, corresponding to the main views of our vi-
sualization. The implementation details for the Character Overview
and Character-Pair view components will be described in further detail
below.

5http://meanjs.org/
6https://nodejs.org/en/
7https://expressjs.com/
8https://www.mongodb.com/
9https://angularjs.org/

10https://getbootstrap.com/
11https://d3js.org/

http://meanjs.org/
https://nodejs.org/en/
https://expressjs.com/
https://www.mongodb.com/
https://angularjs.org/
https://getbootstrap.com/
https://d3js.org/


In addition, we also implemented an Angular service containing
state information that’s shared and can be updated across all compo-
nents with RxJS’s 12 implementation of the observer design pattern [1].
State information includes filtering options from the Sidebar and se-
lected/hovered nodes (characters) from Character Overview. This was
necessary for implementing features like linked highlighting and shared
filtering across components.

5.2.1 Character Overview
The nodes and links are rendered as SVG elements with D3.js. The
tapered, curved geometry of the links are generated by rendering two
quadratic Bezier curves with shared endpoints. The width varies along
the length of the link to indicate direction, and the distance between
the two curve peaks is proportional to the engagement value of the
relationship it encodes. To keep the nodes centered in the visible area
while preventing node overlap, we used D3’s force-directed graph
layout implementation. Two forces were specified: (1) a repulsive force
between the nodes, and (2) a small positive charge force towards the
center of the view.

5.2.2 Character-Pair View
The small multiples in the Character-Pair component were generated
by using D3’s selection.each function to create a scope for each
multiple, effectively making one SVG element per graph, and defin-
ing local data values as appropriate. Because we needed to render
a bar chart with a vertical diverging scale, we implemented it with
limited examples as most had diverging bar charts that were horizontal.
We also experienced challenges in working with selection.each as
our inexperience with scope changes made it difficult to implement
functionalities that would be trivial otherwise.

Most work was spent in making sure all graphs rendered correctly in
relation to each other, as well as in filtering and sorting the small multi-
ples. Sorting of the small multiples was based on the total magnitude
of sentiment valence values for each chart. Charts were arranged based
on total sentiment magnitude in descending order, from left-to-right,
then top-down.

6 RESULTS

Fig. 3: The Character Overview with Bottom selected.

12https://rxjs-dev.firebaseapp.com/

Fig. 4: Linked highlighting between the Character Overview and the
Character-Pair View when hover over the node labelled ‘Titania’.

In this section, we discuss a scenario of use from the perspective
of Sarah, a graduate student who is writing a character analysis for an
English literature class. The analysis is centered around the character of
Bottom, the self-possessed actor who is a central figure in A Midsummer
Night’s Dream.

After an initial read of A Midsummer Night’s Dream, Sarah opens
the ShakesPeer web application. In the Character Overview, she sees
a dense network of all interacting characters in A Midsummer Night’s
Dream. Since she is specifically interested in the character of Bottom,
Sarah selects the node labelled ‘Bottom’. Upon selection, the node
is highlighted with a thick black stroke. The outgoing edges, each
pointing to a character that Bottom speaks to at some point in the play,
are colour-coded based on sentiment. From a quick glance, she can
see that Bottom’s dialogue with these characters is mostly neutral or
positive in sentiment (Fig. 3).

In her analysis, Sarah would like to write a paragraph about Bottom’s
relationship with Titania. With Bottom selected, she hovers over the
node labelled ‘Titania’. This highlights the bar chart in the Character
Pair View that visualizes the sentiment between the two characters
throughout the play (Fig. 4). Despite the importance of their relation-
ship in A Midsummer Night’s Dream, she discovers that Bottom and
Titania appear together in only two scenes: Act 3, Scene 1 and Act
4, Scene 1. The height of the bars indicate that Titania has a stronger
positive sentiment towards Bottom compared to his sentiment towards
her (Fig. 5). Sarah finds this intriguing. With this knowledge, she
returns to the text and discovers that despite Bottom’s self-possession,
he conveys a subtle skepticism during his encounters with Titania. For
instance, when Titania declares her love for him in Act 3, Scene 1,
Bottom replies that she “should have little reason for that” [12].

(a) Act 3, Scene 1 (b) Act 4, Scene 1

Fig. 5: A grouped bar chart showing bidirectional sentiments by scene
between Bottom and Titania. In both figures, a tooltip appears when
hovering over the area outlined in red.

https://rxjs-dev.firebaseapp.com/


7 DISCUSSION AND FUTURE WORK

In this section, we will first discuss one major challenge that we faced
during the design process. Then, we will discuss the strengths, weak-
nesses, and limitations of ShakesPeer in regards of the four tasks we
planned to support described in Section 3.3. Then, we will describe the
features we were unable to implement due to time constraints as well
as possible extensions from the current design.

7.1 Challenges

In the initial stages of the design process, we chose our visual encoding
idioms prior to knowing what our sentiment data would look like. After
deriving the sentiment values, we were surprised to see that the data was
very sparse overall. Additionally, for the pairs with sentiment values,
the inter-pair variance was unexpectedly high. We had to go undergo
extensive revisions for the final design and task abstraction to account
for the sparsity and variance of the data. For instance, we realized that
it was important to differentiate the pairs without any sentiment data
from the pairs with sentiment data. In retrospect, we believe that it
would have been extremely helpful to go through some iterations of
rapid prototyping before committing to a representation. During the
revision process, we found that it was easy to quickly plot graphs of
our sentiment data using matplotlib 13 library in Python 3 via Jupyter
notebook.

7.2 Strengths, Weaknesses, and Limitations

Considering the complexity and scale of Shakespeare’s plays, Shake-
sPeer helps users find the “interesting” parts or aspects of the play
quickly (T3). The Sidebar provides a comprehensive filtering function-
ality for the Character Overview, allowing the user to select a subset of
the play that they would like to see, both in terms of scenes and char-
acters, to avoid the “hairball effect”. The plots in the Character-Pair
view are also sorted by the magnitude of sentiment in the plot, making
it easy for users to discover the plot of their interests. This functionality
is important for expanding our work to include other Shakespeare’s
plays, since most of them have even more characters than A Midsummer
Night’s Dream.

Our data abstraction from plain text to two numerical attributes, en-
gagement and sentiment, greatly simplifies the data while still allowing
the user to gain important information about character relationships,
for the discover (T1), compare (T2), and summarize (T4) tasks. How-
ever, the exploration of raw content of the play, such as explaining the
cause of sentiments or the content of the engagement, is beyond the
scope of our task abstractions. If the user wants to relate the displayed
information to the actual story plot, they will have to do a look-up by
scene, based on the tooltips in Character-Pair view.

Another problem with our data abstraction is the naive approach we
employed for determining recipients of sentiments. Our methods will
work better for some plays compared to others. For example, it will
work better for a play with a lot of direct confrontations compared to
a play with a lot of gossip (i.e., dialogue between characters about a
different character who is not a part of the conversation). Therefore,
the sentiment valence shown in the plot should be interpreted carefully
in all tasks (T1-T4).

As mentioned briefly in Section 4, there are several trade-offs in
the design decisions we made, which result in three limitations of
the tool. First, in the Character Overview, the thickness of the links
encoded engagement, meaning that they take up a considerable amount
of space. Inevitably, this causes the links to overlap. This is especially
problematic when a thinner link is completely occluded by a thicker
link. We tried to alleviate this problem by reducing the opacity of
the links, so that even when they are overlapped, you can still make
out the thickness of the parts that are covered. In the case above,
where a thinner link is completely covered, this approach allows the
user to view the thickness of the thinner link, although it would still
be difficult to determine the color of the link. A workaround is if
the user manually drags around the nodes to rearrange the links by

13https://matplotlib.org/

themselves. Nevertheless, this could be an inconvenience to the user
when performing compare (T2) and summarize (T4) tasks.

Second, in the Character Pair view, we chose not to normalize the
sentiment valence values across displayed plots and did not allow axis
rescaling. Therefore, small sentiment values, which might still be
important, cannot be easily distinguished or compared. We decided on
this design choice because we thought that having all plots under the
same scale makes for easier comparison at a glance, and we tried to
alleviate this problem by providing the tooltips, which allows the users
to see more specific information. Depending on the specific information
or pattern that the user wants to observe, this could be a limitation for
the compare task (T2).

Finally, with the bar chart design in the Character-Pair view, we
decided to omit the visualization of engagement in each scene in order
to show the sentiment valence values more clearly. We made this
design decision because we prioritized sentiment information over
engagement. We tried to accommodate users who wished to look at
engagement by encoding the information in the Character Overview as
well as by using the Bing Liu lexicon, where the sentiment values have
more correspondence to the number of words in the speech than the
AFINN lexicon. However, this is still a major limitation for discovering
how engagement between a pair of characters might change over time
(T1).

7.3 Future Work

Due to time constraints, only one play, A Midsummer Night’s Dream,
was visualized using our tool. In the future, we would like to evaluate
the generalizability of ShakesPeer for other plays, including those with
denser, more complex character-relationship networks. There are also
two additional features that we would like to include in future iterations
of ShakesPeer: (1) the capability to compare character relationships
across different plays, and (2) the option to view sentiment values from
different sentiment lexicons. We found that in some cases the sentiment
values from the Bing Liu lexicon were significantly different from the
results from AFINN. Thus, it could be useful to give users the option
to view the sentiment values from their preferred lexicon.

Usability testing is a critical component of the design process to
determine whether a new product or tool is useful and easy to use
for its intended purpose [11]. Ultimately, we would like to evaluate
ShakesPeer with representative users, such as students, literary scholars,
and professors. Gathering user feedback will help us identify any issues
with the design and will provide insight into the ways that the tool can
be improved. For instance, there may be other measures of interest
besides character-to-character sentiment and engagement that users
want visualized, such as themes and settings of speech.

8 CONCLUSION

We propose ShakesPeer, an interactive tool for visualizing detailed
character and relationship information (i.e., sentiment and engagement)
based on the dialogue of a play. ShakesPeer is comprised of two main
views. The Character Overview provides a summarized visualization
of all character relationships in selected scenes, and the Character-Pair
view shows the development of sentiment and engagement between
pairs of characters throughout the story. With the Sidebar, users can
isolate characters of interest by filtering the visualizations by scene,
character, and character type. Although ShakesPeer currently only visu-
alizes A Midsummer Night’s Dream, it is generalizable and extensible
to other Shakespearean plays. The immediate next step for ShakesPeer
is to derive requirements for future iterations by conducting usability
tests with representative user groups.

ACKNOWLEDGMENTS

The authors wish to thank Dr. Tamara Munzner for her guidance
throughout this project. We also would like to thank Marjane Namavar,
Matheus Stolet, and Vaastav Anand for their valuable feedback and
suggestions during the peer project review sessions.

https://matplotlib.org/


REFERENCES

[1] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns:
Micro-Architectures for Reusable Object-Oriented Design. 1994.

[2] B. Gaydin. Digital tools for comparative thesaurus analysis of russian
translations of w. shakespeare’s works: Results of the first year. Horizons
of Humanities Knowledge, (6):169–182, 2017.

[3] M. Grandjean. Network visualization: Mapping
shakespeare’s tragedies. www.martingrandjean.ch/

network-visualization-shakespeare/, 2015.
[4] D. Holten, P. Isenberg, J. J. Van Wijk, and J.-D. Fekete. An extended eval-

uation of the readability of tapered, animated, and textured directed-edge
representations in node-link graphs. In 2011 IEEE Pacific Visualization
Symposium, pp. 195–202, 2011.

[5] E. Johansson. Tolkien’s books analysed.
[6] B. Liu. Opinion mining and sentiment analysis. In Web Data Mining, pp.

459–526. Springer, 2011.
[7] S. Mohammad. From once upon a time to happily ever after: Tracking

emotions in novels and fairy tales. In Proceedings of the 5th ACL-HLT
Workshop on Language Technology for Cultural Heritage, Social Sciences,
and Humanities, pp. 105–114. Association for Computational Linguistics,
2011.

[8] T. Munzner. Visualization Analysis and Design. AK Peters Visualization
Series. CRC Press, 2015.

[9] E. T. Nalisnick and H. S. Baird. Extracting sentiment networks from
shakespeare’s plays. In 2013 12th International Conference on Document
Analysis and Recognition, pp. 758–762. IEEE, 2013.

[10] F. Å. Nielsen. A new ANEW: Evaluation of a word list for sentiment
analysis in microblogs. In Proc. ESWC-11, 2011.

[11] J. Nielsen. Usability engineering. Elsevier, 1994.
[12] W. Shakespeare. A Midsummer Night’s Dream. Ginn and Company, 1910.
[13] R. Zakovich. Shakespeare: A data visualization.

https://www.informationisbeautifulawards.com/showcase/2044-
shakespeare-a-data-visualization.

www.martingrandjean.ch/network-visualization-shakespeare/
www.martingrandjean.ch/network-visualization-shakespeare/

	Introduction
	Related Work
	Digitized Shakespearean texts
	Visualization of Shakespearean texts
	Sentiment Analysis

	Data and Task Abstractions
	Domain Background
	Data Abstraction
	Character Relationship Network
	Per-Scene Data Table

	Task Abstraction

	Solution
	Character Overview
	Character-Pair View
	Interactions Across Views

	Implementation
	Pre-processing and Sentiment Analysis
	Visualization and Web App
	Character Overview
	Character-Pair View


	Results
	Discussion and Future Work
	Challenges
	Strengths, Weaknesses, and Limitations
	Future Work

	Conclusion

