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1 INTRODUCTION

Technological advances in biology research have made it easier than
ever before for researchers to obtain large amounts of measurement
data. While this development certainly had a positive overall impact
on the quality and efficiency of research, it has also created a new
challenge, which is to effectively handle and interpret the amounts of
collected data. A field where this effect is particularly noticeable is that
of genetics, where the ability to read longer DNA sequences at a time,
combined with the reduced cost of doing so, has led to an explosion of
the amount of available data.

While automated tool-chains provide fundamental support for biol-
ogists on a lower level of data processing, the task of interpreting and
contextualizing measurements is still highly reliant on human exper-
tise. To work effectively, it is essential for these experts to be able to
quickly switch between a coarse overview of the available data-set and
a fine-grained analysis of specific data ranges of interest. Modern vi-
sualization tools are available for many types of analyses, yet of them
are sufficiently suited for the analysis of long-read sequencing data to
identify structural variations. This work aims to create a visualization
that matches the specific needs of researchers working on this type of
analysis task.

Due to his experience in the field of bioinformatics research, Baraa
Orabi can support this project both in the visualization design and as a
domain expert. He worked with the data for a few months over the last
year. This, as well as consultations with members of the Dr Faraz Hach
lab at the Vancouver Prostate Centre, prompted the task abstractions
in this proposal.

2 BACKGROUND

Living organisms use DNA to encode genetic information. DNA
molecules are chemical molecules and are composed of repeating sub-
molecules known as nucleotides (nt). There are four main types of
nucleotides that are often represented with the letters A, C, G, and T.
Thus, any DNA molecule can be abstractly thought of as a sequence
written using a very limited alphabet containing only four letters. The
collection of all DNA molecules in a cell is known as the genome.
Genome sequences can become very long; for example, each human
cell contains three billion nucleotides worth of DNA molecules.

Most of the functions in living organisms are performed by pro-
teins. Proteins are molecules that have specific chemical structures es-
sential for their function. The structure of every protein is determined
by a gene. Genes are specific substrings of the genome. The human
genome contains about 20,000 genes which combined constitute about
2% of the whole genome.

To translate a gene to a protein, a copy of the gene called transcript
is created. However, some parts of the transcript can be spliced out,
meaning that they are removed before the transcript is translated into
a protein. Different transcripts of the same gene can be spliced in
different ways. Those alternatively spliced transcripts of the same gene
are known as isoforms. Alternative splicing allows one gene to encode
for multiple proteins with similar chemical structures but potentially

completely different functions. The transcriptome is the collection
of all isoforms sequences in a given cell. The human transcriptome
contains about 80,000 isoforms, averaging four isoforms per gene.

Sequencing is a technology that takes real DNA molecules and
outputs digital files containing the nucleotide by nucleotide sequence
of these different molecules. Ideally, a single DNA molecule is se-
quenced (read) end-to-end with no sequencing errors. However, reads
generated by sequencing technologies are far from perfect. Next-
Generation Sequencing (NGS), the most commonly used class of se-
quencing today, generates short reads with lengths ranging from 75nt
to 250nt and has a sequencing error rate of 2 to 4 errors per 1000nt [5].
The reasonably low sequencing error rate of NGS reads makes them
a powerful tool to detect single nucleotide mutations in a sample. On
the other hand, the short length of NGS reads makes them difficult to
utilize to identify larger structural mutations such as large deletions,
insertions, and inversions.

Long-read Sequencing (LRS) is a newer class of DNA sequenc-
ing technologies. LRS read lengths can reach thousands to tens of
thousands of nucleotides, orders of magnitudes more than NGS reads.
However, LRS suffers from very high sequencing error rate of 10-
20% [6]. The high sequencing error makes using LRS to detect muta-
tion of single nucleotides challenging, but its long read sizes make it a
suitable tool for identifying structural variations.

Bioinformatics pipelines can automatically generate predictions of
genetic relations based on reads, even in the presence of high sequenc-
ing error rates. For example, a tool for isoform discovery can use read
alignments to predict the structure of thousands of gene isoforms that
are present in the sample. Each of these isoform predictions is based
on a small subset of reads that provide empirical support for the result-
ing isoform prediction. While automated predictions are an essential
tool for researchers in the field, the results still require manual interpre-
tation. Besides validating them, humans still need to draw conclusions
on a higher level and identify the key predictions from the thousands
of potential results.

3 RELATED WORK

State-of-the-art visualization tools for sequencing data are designed
for NGS short read. For example, Integrative Genomics Viewer (IGV)
stacks as many short reads in a single view as possible [4]. IGV also
restricts the base grid of the view to the reference sequence since NGS
reads are not long enough to be a possible alternative grid.

However, this limitation might not be desired for LRS data. Long
reads are long enough to be treated as reference themselves even with-
out assembly. For example, if the sample contains a novel structure
(not present in reference), LRs would have that in common, and cur-
rent views don’t allow for immediately showing this.

4 DATA

The data we use in this project transcriptomic LRS data. In addition
to the LRS, we will use the reference gene and transcript sequences
from ENSEMBL database [2]. Finally, we will also make use of LRS
data transformation using minimap2 genome alignment and mapping
tool [3].
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Dataset # of reads Length (nt) Throughput (Gnt)Mean Median
WGSC dRNA 10,302,647 906 677 ∼10.0
WGSC cDNA 15,152,101 1,030 771 ∼14.0

VPC cDNA 3,361,630 1,587 1229 ∼3.3

Table 1. Statistical summary of the three LRS datasets.

4.1 Transcriptomic LRS
We will use three datasets. The first two are publicly accessi-
ble datasets from Nanopore Whole Genome Sequencing Consortium
(WGSC) [7]. Both WGSC dataset includes LRS of the transcriptome
of NA12878, a well studied human cell line. However, one uses direct
RNA (dRNA) based sequencing technology and while the other uses
complementary DNA (cDNA) sequencing technology. dRNA LRS
generates slightly longer, more accurate reads than cDNA LRS.

The third dataset is a private dataset from our collaborators at the
Vancouver Prostate Centre (VPC). The VPC LRS dataset is generated
from the transcriptome of 22Rv1, a prostate cancer cell line and is
generated using a cDNA approach.

Table 1 summarizes the main statistics of the datasets.

4.2 Gene reference sequence and annotations
We have human gene reference sequences and annotations from EN-
SEMBL. The reference includes over 20,000 protein-coding genes
with over 80,0000 isoforms. The reference genome and transcript se-
quences will be used as a default grid to align the reads to.

4.3 Read alignment
We will use minimap2 for alignment and mapping. Minimap2 is a
fast sequence aligner and mapper that utilizes a number of indexing
techniques to achieve near-linear alignment (in terms of the read size).
When aligning reads to reference gene sequences we will be using
splice-aware alignment to ensure robustness against gene splicing. We
will also use minimap2 to perform all-vs-all alignment of the reads
which will be helpful when switching the base reference grid.

5 TASK ABSTRACTIONS

Based on talks with domain experts and our own experience, we have
defined the most frequently occurring tasks when these users work
with long-read sequences.

5.1 Selecting genes and reads
A typical data-set can contain millions of reads that can be mapped
onto thousands of genes. To allow users to gain any meaningful in-
sights from this amount of data, they need to be able to select a single
gene to focus on. When LRS technology is used for sequencing, each
gene has on average a few hundred reads, from which either an auto-
mated tool or the user needs to select a subset that is relevant for the
desired analysis task.

5.2 Observation and comparison of indels
The most common type of sequencing error that occurs in LRS are
insertions and deletions of one or multiple nucleotides, often called
indels. While existing bioinformatics tools can identify the positions
of indels and handle them automatically when aligning reads, users
should still be able to view indels to validate the alignment and judge
the overall quality of a read. For this purpose, users should be able
to quickly infer indel sizes visually when examining and compar-
ing reads, requiring potential filtering of minuscule indels based on
a threshold size.

5.3 Contracting empty regions
Genes often have large regions that are always spliced out when they
are transcribed. Some genes can have lengths up to hundreds of thou-
sands of nucleotides of which only a few thousand are found in tran-
scripts. While the presence of spliced out regions is a relevant obser-
vation for experts, there is typically no need to display them true to
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Fig. 1. Proposed visualization pipeline and mock-up. Read lengths and
numbers were chosen for illustrative purposes only and would be larger
in practice.

their size in proportion to the overall gene. Contracting them, either
automatically or manually, would allow experts to focus on the infor-
mation that is actually relevant to them.

5.4 Identification of motifs of interest
Certain gene patterns that have a particular meaning to domain experts.
An example are poly-A tail sequences that mark the end of a gene and
that, if they are present in the middle of a read, indicate an sequencing
error. Another example is the presence of adapter sequences of the
library preparation stage which are expected to be present at the start
of the read. Other, similar sequences that should be easily visible to
experts.

5.5 Viewing the nucleotide sequence and quality
When inspecting a small number of reads, users may be interested in
viewing and comparing the concrete underlying base sequence of the
reads and the gene. In addition, users may be particularly interested in
the quality of the sequence data. For this purpose, the Phred quality
score that tells users the likelihood of a single base being assigned
correctly can be particularly helpful to dismiss some predictions (e.g.
if some reads all say there is an insertion but they all have low quality
for the insertion sequence then that might just be a systematic error).
Phred score is a log-based score that ranges from 1 to 60. A score
of 60, the highest possible score, mean 1/106 chance of being wrong.
LRS quality typically does not exceed 16 (2% chance of being wrong.)

5.6 Inspecting the raw signal
On an even more fine-grained level, for example when interpreting
the Phred quality score of a single read, users may be interested in
inspecting the raw signal that was used to generate the base assignment
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Fig. 2. Mock-up of target switching from the gene (A) to a read R1 (B). Both the overview and detail visualization need to be updated for the switch.

for the nucleotide sequence. This requires the raw signal to be visually
aligned positions on the sequence.

5.7 Target switching
One of the main targets of inspecting long reads is the identification of
structural mutations. While using the annotated gene as a reference is
ideal for identifying many of these mutations, it ignores insertions of
nucleotides that are present in reads but not in the annotated gene. If
the same insertions are present in multiple reads, they might provide
additional insights beyond being noise. Therefore, users might have
an interest in switching the target sequence from the gene to one of the
reads and compare it to other reads.

6 PROPOSED SOLUTION

Based on our previously presented task abstractions, we propose a
data processing pipeline and a visualization design with the goal of
enabling users to execute most of these tasks as effectively as possi-
ble. Due to the limited scope of this project, we have excluded the
gene selection task, which constitutes its own, mostly independent vi-
sualization challenge. Instead, we assume that users have already pre-
selected a single gene of interest and a moderately sized subset of tens,
but not hundreds, of reads they consider relevant for them.

6.1 Design
Figure 2 shows the proposed pipeline for processing raw data and cre-
ating a visualization based on it. In the first step, raw data containing
the reference gene and read sequences is pre-processed using exist-
ing bioinformatics tools to generate alignment information. Notably,
alignments of sequences are computed relative to a reference gene or
read, and this relation is not necessarily symmetric. This means that
for a single gene, the number of possible comparisons grows quadrat-
ically with the number of considered reads.

In our proposed visualization, the computed alignment information
is first visualized as an overview to allow users to examine and com-
pare reads and their relation to the annotated reference gene. Figure 2
shows a mock-up of this overview visualization, using the annotated
gene as a reference and highlighting aligned sequences in green and
mismatches in red. Inserted nucleotides are marked by a purple loop
that is labelled with the number of insertions represented by it. Gaps
in the reads are shown as a thinner, black line.

We consider an overview visualization as proposed here ideal for
the task of comparing reads and their insertions and deletions. Allow-
ing user interactions can further enable them to contract empty region
by selecting the region and using a button or keyboard shortcut, as well
as to identify motifs of interest that can be highlighted in a different
colour if they occur in a read. In addition, the view can support target

switching by double-clicking on a read to make it the new reference
sequence. Figure 2 shows a mock-up specifically of the before-after
view when the target sequence is switched from the gene to the read
R1.

To gain a view of each read’s raw signal and quality, users can select
a small subset of reads and a range of the gene for a detailed compar-
ison. The resulting detail view is shown in Figure 2 visualizes the
different bases as a colour-coded bar chart. The bars, one for each nu-
cleotide in the sequence from left to right, represent the quality score
for each base’s assignment with their height. For the known reference
gene, this quality is perfect for all bases and therefore the height is
always maximal for all nucleotide. For reads however, experts should
be able to identify mismatches based on sequencing errors by their
reduced quality, such as for the 5th bar of Read 2 in this example.

To allow users to compare nucleotide sequences when more than
one sequence is selected, we consider it important to always have all
detail views horizontally aligned with each other. This however causes
issues when one sequence has deletions or insertions compared to the
reference. Deletions can be reasonably visualized as gaps in the chart,
however insertions require a different form of visualization. Figure 2
shows an insertion represented by a dotted purple line labeled with the
number of nucleotides. To give users access to the inserted sequence
without switching the target sequence, we are however also consider-
ing a mouse-over pop-up showing the inserted sequence. For viewing
the raw signal, we consider either an optional overlay over the detail
view or, in case of visibility issues, separate, aligned plot below each
sequence’s bar chart.

6.2 Implementation

To implement our proposed visualization, we intend to build a two-
stage pipeline: To pre-process raw sequence data from reads and the
annotated gene, we plan to use the existing sequence alignment tool
minimap 2 [3]. Using this data, we then use the D3.js framework [1]
to visualize both the alignment information as well as the raw sequence
data using a bar chart as well as custom drawing.

We identified two implementation challenges that we cannot eval-
uate without having a functional prototype: The first is the time re-
quired by the alignment software to produce the derived data neces-
sary for our visualization. To allow real-time switching between tar-
get sequences, which requires a re-computation of all alignments, we
might consider pre-computing and caching the alignment data for all
possible alignment combinations. The second challenge is the amount
of data that needs to be handled by D3.js. While we assume that we
never have more overall data points to visualize at once than tens of
thousands, we might have to use further optimizations like data sim-
plification to manage the performance of our visualization.
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Task Description Hours/Person Completion
Definition Discussion of project idea, biological background and brainstorming about possible

design directions
6 Oct. 27th

Proposal Writing of the project proposal document and creating a first mock-up of the pro-
posed visualization

8 Nov. 4th

Stage 1 Prototype Completion of a first functional prototype of the visualization for a fixed data set
and with limited support for navigation and target switching

15 Nov. 17th

Stage 1 Case Study Gathering feedback on the first prototype by demonstrating it to 1-2 users of the
intended target audience

4 Nov. 20th

Stage 2 Prototype Completion of a second prototype that supports user interaction to navigate and
switch targets

15 Nov. 29th

Stage 2 Case Study Gathering more feedback on the second prototype by asking 1-2 users of the in-
tended target audience to use the prototype for a given task

4 Dec. 4th

Final Polish Incorporating feedback from the second case study and potential visualization of
more motifs of interest

5 Dec. 7th

Final Presentation Preparation of the final presentation and the code for submission 5 Dec. 10th
Final Report Write-up of the final report 10 Dec. 13th

Table 2. Proposed project timeline

7 MILESTONES AND SCHEDULE

Table 2 shows our intended milestones for the project. To allow us to
evaluate our visualization prototype with domain experts in an early
stage, we plan to split development into two stages: In the first stage,
we implement only the static core of our visualization that allows users
to view a selected gene and a given number of reads. While we intend
to implement the detail visualization in this stage as well, navigation
and synchronization between the two views may be limited. By show-
ing our intermediate result to a small number of domain experts, we
hope to get early feedback on how our visualization meets their re-
quirements and expectations. In the second stage, we then plan to
implement the remaining user interactions and allow users to switch
targets. Through a second case study with experts, we expect to re-
ceive more feedback on our fully implemented visualization that we
can then use for both minor polishing as well as laying out potential
future work. Depending on the time constraints of the project, we may
also implement additional features like the visualization of selected
motifs of interest in the examined data.
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