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Fig. 1. Visualization of the PLSCR3 gene and 3 transcriptomic long-reads that are aligned to the gene (top half). A selected range
of the gene and of 2 selected reads is shown in detail, allowing the inspection of the gene’s base sequence, the sequencing quality of
the reads and mismatches between the gene and reads (bottom half).

Abstract— Advances in DNA and RNA sequencing technologies have increased the length of transcriptomic reads sufficiently to
cover full transcripts in a single read. However, tools for visualizing reads alignments have not adapted to this development and
are primarily designed to visualize shorter reads. In addition, their chosen visualization idioms to not provide support for structural
inter-read comparison, which is necessary for bioinformaticians to identify, compare and categorize transcript variations. This work
presents a novel visualization design and implementation that supports bioinformaticians in inspecting and comparing long-read
sequences for a selected gene. As interviews with domain experts show, the visualization’s design with a high level of abstraction on
a coarse level and precise selection tools for ranges of interest fits the needs for their daily work on transcriptomic data. Our solution
is implemented in D3, Python, and Snakemake. Our code and a sample demo are publicly available on our GitHub repository at
github.com/baraaorabi/LTR-vis/tree/code-freeze.

1 INTRODUCTION

Technological advances in biotechnology have made it easier than ever
before for researchers to obtain large amounts of measurement data.
While this development certainly had a positive overall impact on the
efficiency of research and the quality of its results, it has also created a
new challenge, which is to effectively handle and interpret the amounts
of collected data. A field where this effect is particularly noticeable is
that of genomics, where the ability to read longer DNA sequences at
a time, combined with the reduced cost of doing so, has led to an
explosion of the amount of available data.

While automated tool-chains provide fundamental support for
bioinformaticians and biologists on a lower level of data process-
ing, the task of interpreting and contextualizing measurements is still
highly reliant on human expertise. To work effectively, it is essen-
tial for these experts to be able to quickly switch between a coarse

overview of the available dataset and a fine-grained analysis of spe-
cific data ranges of interest. Modern visualization tools are available
for many types of analyses, yet none of them is sufficiently suited for
the analysis of long-read sequencing data to identify structural varia-
tions. This work aims to create a visualization that matches the specific
needs of researchers working on this type of analysis task.

2 BACKGROUND

Living organisms use DNA to encode genetic information. DNA
molecules are chemical molecules and are composed of repeating sub-
molecules known as nucleotides (nt). There are four main types of
nucleotides that are often represented with the letters A, C, G, and T.
Thus, any DNA molecule can be abstractly thought of as a sequence
written using a very limited alphabet containing only four letters. The
collection of all DNA molecules in a cell is known as the genome.
Genome sequences can become very long; for example, each human
cell contains three billion nucleotides worth of DNA molecules.

Most of the functions in living organisms are performed by pro-
teins. Proteins are molecules that have specific chemical structures es-
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sential for their function. The structure of every protein is determined
by a gene. Genes are specific substrings of the genome. The human
genome contains about 20,000 genes which combined constitute about
2% of the whole-genome. Genes as isolated objects are often the level
of abstraction that geneticist and molecular biologists deal with in their
research.

To translate a gene to a protein, a copy of the gene called transcript
is created. However, some parts of the transcript can be spliced out,
meaning that they are removed before the transcript is translated into
a protein. Different transcripts of the same gene can be spliced in dif-
ferent ways. Those alternatively spliced transcripts of the same gene
are known as isoforms. Alternative splicing allows one gene to encode
for multiple proteins with similar chemical structures but potentially
completely different functions. The transcriptome is the collection of
all isoforms sequences in a given cell. The human transcriptome con-
tains about 80,000 isoforms, averaging four isoforms per gene. Thus,
alternative splicing is the dominant reason for structural variation in
transcriptomic data.

Sequencing is a technology that takes real DNA molecules and out-
puts digital files containing the nucleotide by nucleotide sequence of
these different molecules. Each of record in these files is called a
read; a read is the digital representation of DNA molecule. Ideally,
a single DNA molecule is sequenced or read1 end-to-end with no se-
quencing errors. However, reads generated by sequencing technolo-
gies are far from perfect. Next-Generation Sequencing (NGS), the
most commonly used class of sequencing today, generates short-reads
with lengths ranging from 75nt to 250nt and has a sequencing error
rate of 2 to 4 errors per 1000nt [10]. The reasonably low sequencing
error rate of NGS reads makes NGS reads a powerful tool to detect
single nucleotide mutations in a sample. On the other hand, the short
length of NGS reads makes them difficult to utilize to identify larger
structural mutations such as large deletions, insertions, and inversions.

Long-read Sequencing (LRS) is a newer class of DNA sequenc-
ing technologies. LRS read lengths can reach thousands to tens of
thousands of nucleotides, orders of magnitudes more than NGS reads.
However, LRS suffers from a very high sequencing error rate of 10-
20% [11]. The high sequencing error makes using LRS to detect mu-
tation of single nucleotides challenging, but its long read sizes make it
a suitable tool for identifying structural variations.

Bioinformatics pipelines can automatically generate predictions of
genetic relations based on reads, even in the presence of high sequenc-
ing error rates. For example, a tool for isoform discovery can use read
alignments to predict the structure of thousands of gene isoforms that
are present in the sample. Each of these isoform predictions is based
on a small subset of reads that provide empirical support for the result-
ing isoform prediction. While automated predictions are an essential
tool for researchers in the field, the results still require manual inter-
pretation and filtering of a visibly clear false positive.

3 RELATED WORK

State-of-the-art visualization tools for sequencing data are designed
for NGS short-read data. For example, Integrative Genomics Viewer
(IGV) [9] and Integrated Genomics Browswer (IGB) [8] are desktop
software packages that takes read alignment data alongside a target
reference as input. Both IGV and IGB stacks as many short-reads in a
single view as possible. They also restrict the base grid of the view to
the reference coordinate grid since they assume that their input is NGS
data which reads not long enough to be a possible alternative grid. An-
other popular genome alignment view is UCSC Genome Browser [4].
Genome Browser is a web application that is mainly focused on vi-
sualizing genomes alongside relevant genomic features such as genes,
transposons, epigenetic marks, etc. Users may add custom tracks to
Genome Browser that include their read alignment data which is laid
out using a similar design to that of IGV or IGB.

All these tools are designed for short-reads and thus are good for
characterizing single point mutation calls. However, LRS is often used
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Dataset # of reads Length (nt) Throughput
(Gnt)Mean Median

WGSC dRNA 10,302,647 906 677 ∼10.0
WGSC cDNA 15,152,101 1,030 771 ∼14.0

VPC cDNA 3,361,630 1,587 1229 ∼3.3

Table 1. Statistical summary of the three LRS datasets.

to characterize larger structural variations that can span multiple ge-
nomic intervals. Circos plots [6] are one of the more commonly used
design idioms to visualize some large structural variations. However,
Circos plots are typically limited to genomic rearrangements and do
not have an intuitive way to present the underlying reads that support
the structural variation they visualize.

When using any of these tools or idiom with LRS data, two main
limitations arise: 1) long-reads expressing variations can span two or
more genomic intervals and 2) long-reads could contain large novel
sequences that cannot be linearly represented on the reference coordi-
nate grid.

4 DATA

In this work we used data from transcriptomic LRS, reference genes
and transcript sequences from the ENSEMBL database [3]. In addition,
we derived additional data from the LRS data using minimap2 genome
alignment and mapping tool [7].

4.1 Transcriptomic LRS
We used three LRS datasets during the development of this work.
The first two are publicly accessible datasets from Nanopore Whole-
genome Sequencing Consortium (WGSC) [12]. Both WGSC dataset
includes LRS of the transcriptome of NA12878, a well studied human
cell line. However, one uses direct RNA (dRNA) based sequencing
technology and while the other uses complementary DNA (cDNA)
sequencing technology. dRNA LRS generates slightly longer, more
accurate reads than cDNA LRS.

The third dataset is a private dataset from B. Orabi’s research lab at
the Vancouver Prostate Centre (VPC). The VPC LRS dataset is gener-
ated from the transcriptome of 22Rv1, a prostate cancer cell line and
is generated using a cDNA approach.

LRS data is composed of records known as reads. A read has a
read name that is, typically, a random string that is a unique identifier
for the read in the dataset. The read also has a sequence which is a
string of characters drawn from the alphabet: {A, C, G, T}. Table 1
summarizes the main read sequence statistics of the datasets.

Finally, each read has a string of quality scores. The quality string
has the same length as the read sequence. The quality scores are en-
coded using the Phred quality scoring scheme [2]; a Phred score is a
log-based likelihood of a single base being sequenced correctly and
has an integer value between 1 and 60. A score of 60, the highest
possible score, means a 1/106 chance of being wrong. Quality scores,
whether for isolated sequence positions or over an interval of adja-
cent positions, are helpful in dismissing some predictions, e.g., if some
reads all support an insertion but have low quality for the insertion se-
quence then that might be dismissed as a mere systematic sequencing
error.

4.2 Gene reference sequences and annotations
We used human gene reference sequences and annotations from EN-
SEMBL to generate target sequences and the derived data of read
alignments on those target sequences. The reference includes over
20,000 protein-coding genes with over 80,0000 isoforms.

4.3 Read alignment
We used minimap2 for alignment and mapping. Minimap2 is a fast
sequence aligner and mapper that utilizes a number of indexing tech-
niques to achieve near-linear alignment (in terms of the query size).
When aligning reads to reference gene sequences we will be using
splice-aware alignment to ensure robustness against gene splicing.
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5 TASK ABSTRACTIONS

Based on talks with domain experts and our own experience, we have
defined the most frequently occurring tasks when these users work
with long-read sequences.

5.1 Selecting genes and reads
A typical dataset can contain millions of reads that can be mapped onto
thousands of genes. To allow users to gain any meaningful insights
from this amount of data, they need to be able to select a single gene
to focus on. When LRS technology is used for sequencing, each gene
has on average a few hundred reads, from which either an automated
tool or the user needs to select a subset that is relevant for the desired
analysis task.

5.2 Observation and comparison of indels
The most common type of sequencing error that occurs in LRS are
insertions and deletions of one or multiple nucleotides, often called
indels. While existing bioinformatics tools can identify the positions
of indels and handle them automatically when aligning reads, users
should still be able to view indels to validate the alignment and judge
the overall quality of a read. For this purpose, users need to be able
to quickly infer indel sizes visually when examining and compar-
ing reads, requiring potential filtering of minuscule indels based on
a threshold size.

5.3 Contracting sparse regions
Genes often have large regions that are almost always spliced out when
they are transcribed. Some genes can have lengths up to hundreds of
thousands of nucleotides of which only a few thousand are expressed
in transcripts. While the presence of spliced out regions is a relevant
observation for experts, there is typically no need to display them true
to their size in proportion to the overall gene. Contracting them, ei-
ther automatically or manually, would allow experts to focus on the
information that is actually relevant to them.

5.4 Identification of motifs of interest
Certain gene patterns that have a particular meaning to domain experts.
An example is poly-A tail sequences that mark the end of a gene and
that, if they are present in the middle of a read, indicate a sequencing
error. Another example is the presence of adapter sequences of the
library preparation stage which are expected to be present at the start
of the read. Other, similar sequences that should be easily visible to
experts.

5.5 Examining the nucleotide sequences and quality
strings

When inspecting a small number of reads, users may be interested in
viewing and comparing the concrete underlying base sequence of the
reads and the gene. In addition, users may be particularly interested in
the Phred quality scores of the sequence data.

5.6 Read-to-read comparison
One of the main targets of inspecting long-reads is the identification
of structural variations. While using the annotated gene as a reference
is ideal for identifying many of these variations, genomic rearrange-
ments and variations could result in novel insertions of nucleotides
that are present in reads but not in the annotated gene. The presence
of the same novel insertion in multiple reads signals that such novel
insertions are the result of true biological rather than the result of se-
quencing noise. Therefore, users might have an interest in not just
comparing reads to the reference gene but also to use a read as the
reference to compare others to it.

6 SOLUTION

Based on our previously presented task abstractions, we have created
a data processing pipeline and a visualization design with the goal of
enabling users to execute most of these tasks as effectively as possible.
The pipeline is implemented using Snakemake [5] and is available on
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Fig. 2. Data processing pipeline used for generating the visualization.

our GitHub repository. Due to the limited scope of this manuscript,
we have excluded the gene selection task, which constitutes its own
separate data processing challenge. Instead, we assume that users have
already pre-selected a single gene of interest and a moderately sized
subset of less than 20 long-reads they consider relevant for them.

6.1 General design considerations
All of the abstracted tasks we presented previously are either Overview
Tasks which require the context of the entire gene or read, or Detail
Tasks that focus on a localized range of the gene or read. As the length
of a single gene can reach thousands to hundreds of thousands of bases,
it is difficult to effectively support the whole range of described tasks
in a single visualization. We have therefore decided to facet our visu-
alization into an overview and a detail view.

Our overview and detail view use different levels of data abstrac-
tion: While the overview treats reads as sets of alignment fragments
with certain alignment offsets and ranges in relation to the reference
gene, the detail view has a substantially higher resolution and visual-
izes individual bases of the gene and reads. Figure 2 shows the re-
sulting data processing pipeline to enable these views: The overview
is exclusively based on pre-processed alignment data, while the detail
view uses the alignments as well as the selected range in the overview
to query the equivalent ranges in the raw data sequences.

While users may also be interested in limiting the selection of reads
they are interested in, none of the identified tasks is limited to a single
read. This means that an effective visualization always needs to be able
to display the gene and one or multiple reads next to each other. Since
this applies to both the Overview Tasks and Detail Tasks, we have de-
cided to further facet each view into a Small Multiples visualization
that shows reads and the gene next to each other. To effectively com-
pare genetic bases, it is essential that they are aligned based on their
position in the sequence. We have therefore decided to always syn-
chronize this axis for each multiple of our respective views, as shown
in Figures 1 and 2.

6.2 Read alignment overview
The read alignment view serves two fundamental purposes in our vi-
sualization:

1. It is the first view presented to users and therefore needs to give
them an immediate summary of the overall structure of the visu-
alized dataset consisting of both the gene and all reads with their
corresponding indels.
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2. It is the point at which all navigation interactions take place, al-
lowing users to select the range of the genetic sequence they want
to inspect in detail and to crop and zoom the view to focus on rel-
evant areas of the gene.

We discuss how our visualization design serves these purposes in
the following subsections.

6.2.1 Splicing alignment visualization
To summarize the whole dataset’s structure, we have chosen alignment
fragments as a data abstraction that retains an approximately constant
size and complexity independent of the scale of the visualized gene.
While the underlying length of a genetic sequence is frequently in the
range of tens of thousands of data points, even the longest reads rarely
have more than a dozen individual alignment fragments. Each frag-
ment represents either a single region of alignment, insertion or dele-
tion. As aligned regions and insertions have corresponding sequence
data, we visualize them through filled blocks, while empty deletions
are represented by a thin line. Since fragments of a single read cannot
overlap, they can further be visualized very directly by using a single
scale and axis for all fragments’ sizes and offsets on the gene.

While aligned read fragments might have other data of interest as-
sociated with them that is relevant to the user, we have identified the
quality of the alignment, which is defined by the relative amount of
mismatches between the read and the reference, as the one that is most
relevant to the user when comparing and evaluating indels. Conse-
quently, we have decided to embed alignment quality directly into our
overview by color-coding aligned fragments on a diverging scale.

The reference gene to which all reads are related is always com-
pletely available and spans the full available range for all read frag-
ments. Therefore the only benefit of displaying the gene along the
reads is consistency with the detail view, in which it is essential to dis-
play the reference gene’s base sequence. To achieve this consistency
while also providing further value to the user, we have decided to high-
light motifs of interest through markers that are defined by a range on
the gene as well as a categorical type that we decided to represent by
its color.

While aligned fragments and deletions correspond to a specific
range on the reference, this does not apply to insertion fragments,
which therefore do not have representation on the used axis. For the
task of comparing and evaluating indels, the most relevant information
about insertions, besides their presence itself, is their size. To allow
users to compare the size of insertions to that of aligned fragments, we
have decided to encode both using the same scale. While insertions
do not have a natural position on the used axis, they do have an order
relative to the aligned blocks. In particular, most insertions are either
prefixes that occur before the first aligned block, or suffixes that occur
after the last aligned block. In addition to prefixes and suffixes, inser-
tions can also occur between two aligned blocks, although this case
occurs less frequently. When positioning insertions, we have therefore
decided to place prefixes immediately before the first aligned block,
suffixes immediately after the last aligned block and other insertions
in the middle of the two surrounding aligned blocks.

To avoid occlusion between aligned blocks and insertions, and to
clearly distinguish them from each other, we have decided to place
insertions on a separate row above all aligned blocks and deletions.
While this can still lead to occlusion between multiple insertions in
rare cases, it ensures that aligned fragments always remain fully vis-
ible. Since alignment quality does not apply to insertions, we have
decided to not color-code them but instead use the same highlighting
of motifs of interest as for the reference gene.

Our chosen positioning approach can cause prefixes and suffixes to
extend beyond the range of the gene axis. To avoid misinterpretation,
we cut off these overlong ranges but place a number at the edge of the
axis that represents the length of the cut-off range.

6.2.2 Navigation
The most fundamental navigation interaction our overview provides
is the selection of a range that defines the boundaries for the detail

Fig. 3. Block-based visualization of a read’s alignment. Block positions
and sizes correspond to their offset on the gene and length. A diverging
color scheme represents alignment quality. Insertions with no alignment
to the gene are shown in gray, with categorically color-coded motifs of
interest. If insertions extend beyond the canvas, they are cut off and the
remaining length is shown as a numerical label.
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Fig. 4. Target switching from an alignment to the gene to an alignment
to a selected read. The switch can reveal relevant read-to-read align-
ments, such as those in the selected area, that would not be visible
otherwise.

view. This interaction is illustrated in Figure 1. Following our design
principle of synchronized axes, range selections always apply to all
reads and the gene at once. In addition to selecting a range on the data
sequence, users can also select a subset of reads that they intend to
compare to the reference gene. This selection is particularly important
to improve the visibility of the relevant data by reducing the number
of small multiples that are displayed in the detail view. Figure 1 shows
the selection of reads through check-boxes.

In addition to selection interactions, the overview visualization also
supports advanced navigation through cropping and zooming the dis-
played data range. Unlike selection, these interactions change the vis-
ible data for both the overview and the detail view. Figure 5 illustrates
the two interactions: Through a keyboard shortcut, a selected range of
data can be cropped out, resulting in the remaining data to be stretched
to fill the empty space, or zoomed in, effectively cropping out the re-
maining data ranges. To enable the most flexible navigation and con-
sistent user experience, both cropping and zooming can be repeated
and applied in any order.

The ability to hide irrelevant data can greatly improve the visibility
of relevant data ranges, as particularly the right example in Figure 5
illustrates. However, it also introduces perceptual complexity as the
data axis can become discontinuous like on the left side of Figure 5.
To ensure that users are always aware of discontinuities in their data,
we add a black marker wherever discontinuities occur.

As insertions do not have a fixed position on the reference gene,
they are excluded from cropping unless the position they are visually
anchored to is cropped out. This can lead to them spanning across
discontinuities as shown on the left side of Figure 5. While this result
might not seem intuitive at first, we considered alternatives and con-
cluded that the chosen approach, once rationalized, is the most useful
one in practice and causes the least perceptual distortion of the under-
lying data.

6.2.3 Target switching
Besides the previously presented navigation interactions, the task of
read-to-read comparison requires an additional form of overview navi-
gation: Instead of using the annotated gene as a target to align reads to,
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Fig. 5. Advanced overview navigation by cropping out or zooming into the selected range. Both types of operations can be combined in any order
to precisely customize the visible data range. If a selection spans one or more cuts, the corresponding data is also cut from the detail view.

users may want to explore alignments between individual reads. Using
a read as an alignment reference is particularly useful for comparing
insertions between reads, which is not enabled by the previously pre-
sented overview.

The overview provides users with two ways to trigger a target
switch. By clicking on a read’s name, this read is selected as the tar-
get and the remaining reads are aligned to it. Alternatively, users can
directly double-click on an insertion fragment to not only switch the
target to the corresponding read but also highlight the area of the read
covered by the insertion. This provides users with additional context
to simplify a before-after comparison.

While alignment fragments for different targets are derived from
the same raw base data and often related, there is not necessarily a
full symmetry between, for example, aligning a read to the gene or the
gene to a read. This means that target switching not just provides a
different lens on the same dataset but can provide access to additional
derived information not accessible otherwise.

Figure 4 illustrates a target switch from the default read-to-gene
alignment to an alternative alignment to a selected read. Besides
revealing potentially relevant motifs of interest on the read, target
switching also allows easy analysis of inter-read alignments. In the
top view of Figure 4, it is not clear if the prefixes have any relation.
After target switching, the bottom view shows that some of the in-
sertions in the selected range are related. This may support a user
in distinguishing measurement errors from real biologically relevant
findings.

6.3 Base sequence detail view
After users selected a sequence range and relevant reads to display
in the overview, the base sequence detail view allows them to exam-
ine this data in its full resolution. For a given range of the currently
selected target, the detail view displays two attributes for each read
and sequence position: The called base for a single nucleotide is dis-
played as a color-coded categorical attribute, and the Phred quality
score is height-coded, allowing the detail view to be read like a bar
chart. Instead of an explicit legend for the called base colors, the de-
tail view displays the assigned letters on top of the view as long as the
selected range is reasonably small. While our chosen color scheme is
colorblind-friendly, this redundant encoding intends to make the dis-
played information even more accessible.

The ideal length of a selection to be effectively displayed and ex-
amined in the detail view is in the range of dozens but not hundreds
of data points per read. Figure 6 shows the detail view for such an
amount of data. Since the primary purpose of the detail view is to
enable the comparison of reads to the target and particularly the in-
spection of mismatches, we have decided to only color-code bases on
the reads that differ from the target. This not only serves to avoid an
otherwise high level of redundancy in the display but also explicitly
highlights mismatches to the user. This highlighting remains effective
even for larger selection ranges, such as hundreds or even up to 1500
bases (which is the maximum range that the detail view supports for
performance reasons). Figure 7 shows such a large range, which can

Fig. 6. Detail view with color-coded and labeled individual bases. For
each base, bar height represents the sequencing quality. For reads,
only bases that do not match the gene are colored to highlight them.

Fig. 7. While individual bases become indistinguishable for larger
ranges, mismatches highlighted by color remain visible and can allow
a more fine-grained identification of areas of interest than the overview.

be useful for users to identify areas that contain mismatches of interest
and zoom in further.

While our overview allows the selection of a subset of reads to be
displayed in the detail view, it can be difficult to accurately compare
individual positions across the different tracks of the small multiples
view. To improve this accuracy, the detail view provides a vertical line
marker that spans all tracks and follows the mouse cursor as the user
hovers over the data. While the name of the displayed read or gene
is displayed for each track, we also ensure that the order of the reads
in the overview is always consistent with the order of the detail view,
even if reads are added out of order.

7 IMPLEMENTATION

To implement our visualization, we created a two-stage pipeline: To
pre-process raw sequence data from reads and the annotated gene, we
used the existing sequence alignment tool minimap 2 [7]. Using this
data, we then used the D3.js framework [1] to visualize both the align-
ment information as well as the raw sequence data.

While the preprocessing of the alignments can be performed in less
than a minute on a desktop computer, for technical reasons we de-
cided to pre-compute all possible read-to-gene and read-to-read align-
ments for each gene. The resulting data size for one gene and up to
15 reads was in the range of tens of MB which is reasonable this use
case. It may however not scale sufficiently to allow pre-building a full
database for a more substantial dataset as the ones shown in Table 1.
Besides an increased implementation effort and a potentially longer
delay when loading new data, we do not foresee major challenges in
switching to on-demand computation for future implementation.
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Due to the chosen abstraction for our overview, we had no issues
in drawing even exceptionally long genes with hundreds of thousands
of nucleotides. For the detail view that shows the genetic sequences
in their full resolution, the performance for re-rendering larger selec-
tions dropped notably enough to cause usability issues when selecting
ranges. We therefore decided to limit the maximum selection size to
be displayed to 1500 bases, which led to acceptable performance even
on machines with limited computing power. We consider this limi-
tation reasonable since the detail view becomes visually too cluttered
for larger selections and the overview provides navigation features that
allow users to fully customize the displayed range to their needs.

8 EVALUATION

We conducted interviews with four domain experts in computational
biology or bioinformatics algorithm development: E1, E2, E3 and E4.
The interviews were loosely structured and each lasted about 15 min-
utes. Each interview started by introducing the visualization on two
already preprocessed genes, PLSCR3 (length ∼5,000 nt) and BRCA1
(length ∼125,000 nt). We choose these two genes to present the scal-
ability of the solution with respect to the gene length. Each gene visu-
alization included about 20 reads from the WGSC cDNA (Table 1).

All interviewees are researchers at the Vancouver Prostate Centre.
E1 is a senior computer science PhD student working on genome as-
sembly and structural variation detection problems using LRS data. E2
is a computer science PhD student working transcriptomic LRS data
to detect gene fusions. E3 is a bioinformatics PhD student working
on single-point mutation calling using NGS sequencing and ChIP-seq
data, a type of sequencing that correlates far regions of the genome
based on their interaction with a given protein. E4 is a principal inves-
tigator whose research interests focus on bioinformatics and sequenc-
ing algorithms development.

After introducing the main interactivity features and mark encod-
ings, our interview focused on answering the following questions:

1. What was done right and how does it help in your work?

2. What was done wrong and needs to be modified?

3. What features are missing and need to be added to the visualiza-
tion?

The overall feedback we received from the interviews was positive:
Interviewees found the visualization marks intuitive and that most id-
ioms serve their task needs. All the interviewees pointed out that crop-
ping of sparse regions is a very helpful feature for their workflow.
E1 and E2 mentioned that cropping would enable them to visualize
variations caused by large deletions or inversions and that are typi-
cally thousands to hundreds of thousands of nucleotides long which
other genome alignment viewers (IGV and Genome Browser) such
cannot visualize effectively. Additionally, all interviewees found scal-
ability of the visualization to large targets is a major advantage over
present alignment viewers. E3 pointed out that the choice to set the
color of matching characters in the detail view to grey and only col-
oring mismatching bases was excellent to quickly locate mismatches.
E3 immediately pointed out that the fusion of quality mark (height
of the bar) and mismatch mark (fill color of the bar) makes it easy
for them to identify likely false positive mutations. Additionally, E3
found that target switching using the insertion marks and seeing that
other reads have aligned blocks on the selected target read insertion
motivates them to consider that those insertions are not random noise.

Interviewers criticized some design choices in the visualization. E1
and E3 found it difficult to track horizontally match blocks on the side
of the canvas to their respective checkboxes on the other end side. E3
suggested that we use alternating background highlighting to facilitate
visual tracking of read blocks. E3 also pointed out that the overlap in
the choice of colors for the motifs and match blocks is, at least initially,
confusing. E4 mentioned that the space occupied by the read names
would be better utilized if read names were hidden and more reads
are packed vertically. E4 suggested that displaying read info upon
mouse hover would suffice for most of their needs. E1 mentioned that

tracking different read alignment intervals when target switching from
the gene to a read is important and that the current target switching
mechanism does not facilitate that.

All interviewees mentioned a number of features that they think the
visualization needs to be extended with. E1 and E4 mentioned that
starting from a whole-genome view would be more intuitive to typical
users and would enable certain analyses that the current visualization
does not provide. Such analyses include detecting variations which
span extends beyond the boundaries of a single gene. On a similar
note, E2 and E4 stressed the need to visualize the secondary align-
ments of long-reads since those alignments are important to consider
when evaluating gene fusion or structural variation events. E3 stressed
the need to visualize small insertions and deletions that occur within
a match block in the detail view and that the current detail view does
not allow the user to easily distinguish between small deletions and
skipped (intronic) regions that fall outside match blocks. Finally, E1
stressed the importance of allowing the user to sort and filter the reads
during the visualization stage and not to restrict it only to the prepro-
cessing stage.

9 DISCUSSION

The results of our evaluation confirm that our visualization design pro-
vides substantial benefits over existing tools. Some of these, like the
chosen approach for small multiples faceting or the ability to switch
alignment targets, are specifically useful for the typical tasks executed
on long-reads. Particularly the chosen approach to iterative cropping
and zooming might however also be applicable and effective for tools
that visualize short-reads or other genetic sequence data.

In the following, we discuss the limitations of the presented work
and outline intended future work.

9.1 Limitations

The most significant factor that limits the practical application of our
tool is that it does not address the task of selecting genes and reads.
This means that biologists need to use other tools to select genes and
particularly reads of interest from a dataset. While our overview visu-
alization would be helpful for selecting reads, it does not scale suffi-
ciently enough to be used for inspecting more than a few dozen reads at
once. We could see a more aggressive scaling approach with a matrix-
like alignment of read overviews as an interesting starting point for fu-
ture work, but expect additional modifications and a potentially more
coarse abstraction level to be necessary.

Another limitation of our visualization is that it assumes that reads
will 1) span a single gene and 2) have a single alignment. While this
assumption hold for most reads, many structural variations of interests
are inferred from reads that map to more than one gene and/or have
multiple alignments.

Finally, a limitation that is the result of the chosen implementation
frameworks is the inability to save and restore the state of the visual-
ization or export data. For similar reasons our tool currently misses the
ability to add annotations and notes to data for later use. While most
visualizations for biologists are stand-alone desktop applications, our
current tool is implemented as a web-based view. This does not gen-
erally rule out the option to save and load local files, but may result in
a less convenient work-flow for users.

9.2 Future work

We believe that many of the limitations we have described as well the
lacking features highlighted by our user can be overcome by future
work. Adapting our current overview visualization for this task or de-
veloping a new design from scratch would be an interesting challenge.

In addition, we are interested in conducting a more structured and
extensive evaluation of our work. While we have provided partici-
pants with sample data when we demonstrated our tool, a more real-
istic test of its practical usefulness would be to let users work on their
own datasets and execute realistic every-day tasks. Interviewing them
about their success and satisfaction could provide significantly more
useful insights into missing features or other room for improvement.
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10 CONCLUSION

This work presented a novel visualization design and implementation
to support bioinformaticians when working on long-read sequences.
While our design does not yet support the full top-down work-flow
of biologists, it provides an effective approach to inspecting transcrip-
tomic read alignments and the underlying genetic base sequence. We
expect this work to be a foundation for the future development of a
full-scale environment for long-read selection and inspection.
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