

Bubble Treemaps for Uncertainty
Visualization

Jochen Görtler,
Christoph Schulz,
Daniel Weiskopf

Presented by Haoran Yu

Recall: Treemaps

● Tree data has different visual encodings
● Each encoding has different requirements for space usage
● Each encoding has its advantage under certain specific visualization

tasks
● Treemap uses the containment mark to encode parent-child

relationship
– Child nodes are nested inside the parent node

Tree

Bubble Treemaps

● Advantages:
– More compact than other treemaps

– Improve readability

– Additional channels used to encode additional
variables

● Additional channels:
– Area for circles

– Curvature for contours
– Line thickness

● Terminology:
– Contour = containment mark
– Tree data is an e.g. of hierarchical data

contour
circle

Visual Encoding

● Bubble Treemaps can visualize data with uncertainty:
– Each node has 2 quantitative attributes: Mean and Variance

– The mean of a node is encoded as the area channel

– The variance is encoded as the curvature channel

– The grouping of nodes can be encoded using color

Nodes with high variance

Bubble Treemap Use Case

● S&P 500 Index
– Financial data storing stock prices over a period of time

– Data are grouped by industry or sector

– Large variance of a stock price indicates company is unstable,
either growing or declining

Stock 1: Yahoo
Stock 2: AT&T
Stock 3: Amazon

Technology companies

Mean price over past 7 days

How is the mean and variance of
internal nodes calculated?

Algorithm for Bubble Treemap

1. Propagation of Mean and Variance to
parent nodes

2. Create contours around subhierarchy
(i.e. enclosed circles or child contours)

3. Create layout of nodes or contours by
force-based circle packing

Propagation of Mean and Variance

● If mean and variance were not computed beforehand, then
– for each leaf node i, the mean and standard deviation are computed

as follows:

● For each parent node, use its child nodes to compute mean
and standard deviation as follows:

– where 1...n are child nodes of the parent

– This is the additive property

Create Contours

● For each child node, enlarge node
by a width d
– Where d is a combination of

parameters m + w + p (details in the
paper), plus a smoothness parameter
s.

● Intersect the enlarged nodes and
find an optimal intersection point i,
draw an arc segment at this point

● Use the arc segments at each
intersection point to construct a
complete contour.

● Recurse

original

enlarged

Pack and Create Layout

● For each hierarchy, find the items
that are to be packed:
– All the child nodes inside a parent

● Define a center point p, this is the
point where children are to be
packed around

● Use physics algorithm to pull items
toward the center point until p
becomes the center of mass for
the packed items.

● Recurse

Design Choices

Channel for contour encoding:
Chose wave frequency x amplitude

Channel for contour encoding

Parameters for creating contour
Color channel

Summary

● Idiom: Bubble Treemaps
● What Data: Tree (node value or a group of values; parent-child

relationships between nodes)
● What Derived: Mean and variance (if not already contained in

data) for leaf nodes as well as for internal nodes
● How Encode: map mean value to area of circle; map parent-child

relationship to containment; map variance to wave frequency x
amplitude curvature for contours.

● Why Tasks: Detect abnormal data point; explore and observe
pattern (such as finding the grouping with the largest mean)

● Scale: 3-6 levels of hierarchy, ~500 nodes

Bubble Treemap Critique

● Good:
– Compactness and readability at the same time

– Can encode both certain and uncertain data

– Empty space between contour and nodes gives good perception of structure; labels can be drawn easily

– Simple marks (circles and lines) are easy to interpret

– Algorithm can draw smooth boundaries

– Additional channels are free to use (color for nodes and line style for contours)

– Encoding for uncertainty (contour waves) is easy to detect

● Bad:
– Cannot correctly encode non-linearity data or data with conditional dependence

– Effectiveness of treemaps decreases as hierarchy levels increase – counting the number of levels is
difficult.

– Incorrect parameters used for drawing contours produces bad layout

– Treemap does not support user interaction, algorithm does not permit update quickly when data change

– Physics-based packing algorithm produces different layout every time, cannot be used for treemap
comparison

– Nested structure does not guarantee congruent geometry for two identical sub-hierarchies, making
pattern detection difficult.

