
UBCourse Vis
Jiahong Chen, Siyuan He

Fig. 1. UBCourse Vis: Interface overview showing the course selection on the left and concentric view on the right.

Abstract—We present a novel course information visualization system. Aiming to help both students and curriculum planner, our
system is designed with interactive aspects to best serve people with different needs. An interactive course selection scheme and an
interactive department course catalogue viewer are introduced.

Index Terms—courses, visualization, networks

1 INTRODUCTION

The amount of data has grown exponentially since the last decade. In
need of processing and consuming information, various visualization
tool are developed for intuitive and insightful understanding. The
course information from The University of British Columbia is no
exception to the above rule. With more courses added each year and
the apparent trend of multidisciplinary studies, courses offered by a
department are taken by more students outside the department, and in
consequence, courses have more and more prerequisites. In this project,
we are interested in presenting the prerequisites relationships through
visualization. Section 2 talks about the related work of our project.
Section 3 and 4 details the problem in terms of the VAD framework [8].
Section 5 and section 6 talks about our solution and implementation.
Section 7 provides use of scenarios of our system. Section 8 discusses
the strengths and weaknesses of our work.

2 RELATED WORK

Network visualization is usually drawn as node-link diagrams, where
the vertex are represented as disks or boxes with a text label, and edges
are shown in line segments [3, 4]. The CPN(Curriculum Prerequisite
Network) network visualization has been studied by Aldrich [2], where

• Jiahong Chen E-mail: jhchen@mech.ubc.ca.
• Siyuan He E-mail: hesiyuan@cs.ubc.ca

he focuses on the overall topology of the courses at Benedictine Uni-
versity. Aldrich proposed a directed acyclic graph for the network,
in particular, each edge represents a single relation between a pair of
courses. The width of edge directly encode the logical relationships
such as all o f and one o f . A work-in-progress project by Gestwicki [5]
which follows the above CPN encoding idiom, but it is not known if the
project has finished. However, the above papers does not consider the
either or relations. This is accomplished in our project. Pienta and his
colleagues designed an interactive visualization system for networked
data, which helps people to explore the graph query results [9]. Zhao
et al. developed BiDots to discovering and analyzing biclusters, i.e.,
two sets of related entities with close relationships [11]. Srinivasan
et al proposed Orko, for facilitating multimodal interaction for visual
exploration and analysis of networks [10]. Orko provides users with
the freedom of expression via both natural language and touch-based
direct manipulation input. Grtler et al. developed a circular treemap
to intentionally allocate extra space for additional visual variables [6].
While the visualization indicates that Math is the fundamental disci-
pline of many disciplines and there exists some separation of arts and
science, no further meaningful insights can be inferred by staring at the
whole graph. During the course of the project, we also implemented
a containment-based encoding (Figure 2), where containers with dif-
ferent hues signals different logical relations. After several rounds of
peer reviews and discussions with Prof.Munzner, we find the encoding
counter-intuitive and has few advantages over pure text descriptions.



Fig. 2. Containment encoding are counter-intuitive

Number of
course

Total relation-
ship

Number
of manda-
tory pre-
requisition

Number of
either-or
selections

7,521 8,381 6,931 1,460
Table 1. Summary of the Dataset

3 DATA ABSTRACTIONS

All information about UBC courses and theirs prerequisites are col-
lected from UBC course schedule and UBC Student Service. A PDF
file [1] containing information of courses such as the number of credits,
their prerequisites, and short descriptions were downloaded and trans-
formed into a plain text file. We then extracted course information and
prerequisites relationship from this file. Table 1 summaries the dataset.

3.1 Data acquisition
Currently, the prerequisites of a course is formulated in the plain text
of a semi-structured form. Thus, a great amount of data preprocessing
should be done before data visualization. Prerequisites are captured as
follow using Python:

• Regular expression is used to identify the start point of each
course. Each course description starts with 3 to 4 character in-
dicating department name, followed by a 3-digit course id. The
number of credits of a given course is surrounded by a pair of
parentheses.

• If a course has prerequisites before regular expression function
matches next course name and credits, a paragraph including Pre-
requisition must appear. When courses have prerequisites, further
processing will be taken to extract detailed prerequisites.

• Paragraphs indicating course prerequisites usually falls into two
groups: mandatory and either or. All conditions stated in the
mandatory group should be satisfied, and only one group within
either-or groups needs to be satisfied. For example, if the prereq-
uisite statement is ”Prerequisite: A, either B or C or D”, group A
must be satisfied and only one of group B, C and D needs to be
satisfied.

• Each group has several sentences about the detailed description
of prerequisites. Normally, there are only two types of require-
ment, we ignore other requirements since the main topic of the
course project is about data visualization, not natural language
processing. The first type of requirement for the course is all o f
requirement, which means all mentioned courses need to be taken.
The second type of requirement is the one o f requirement, which
means only one of those mentioned courses should be taken.

3.2 Database details
There are four tables stored in the MySQL database: course detail table,
mandatory group table, either group table and or group table. Table 2
shows the structure of credit table, stores the credit of each course.

Field name Description Data type
course key The identifier of each

course, 3-4 characters of
department name plus 3-
digit course ID

Varchar (10)

Number credits Credit of the course int
course name Name of the course Varchar(20)
course description Detailed course descrip-

tion as stated in the
UBC Student Service
Center

Varchar(300)

Table 2. Structure of credit table

Field name Description Data type
course key The identifier of each

course, 3-4 characters of
department name plus 3-
digit course ID

Varchar (10)

group details details of the mandatory
group

Varchar (300)

Table 3. Structure of mandatory group table

Table 3 indicates the structure of mandatory group table, which
stores the information about mandatory prerequisites of courses.

Either group table and or group table are little different from the
mandatory group. Several either group might be attached to only
one either group, and there might be several either-or relationships in
prerequisites of one course. Thus, they are not matched one by one, and
an index should be stated to match each either-or pair. Table 4 shows
the structure of either group table and or group table.

3.3 Data derivation

In addition to the above tabular data, we have some derived data.

• Adjacency List: Given some courses with the text description of
their prerequisites, we build an adjacency list representation of
their relationships.

• Weights: Given a course, we calculate the weight of each of the
prerequisites.

• Hops: Given a course, we can recursively traverse the text de-
scription of prerequisites to finding all prerequisites including
prerequisites of prerequisites of the course. The number of hops
of each such prerequisite to reaching the course is derived and
utilized in the concentric view.

• Number of prerequisites: Given a course, we can go through its
prerequisites description to count the number of listed courses.
This number reflects the complexity of description of prerequisites
of the course.

We analyze the domain problem according to the VAD framework
[8].

Field name Description Data type
course key The identifier of each

course, 3-4 characters of
department name plus 3-
digit course ID

Varchar (10)

idx Index of the either-or
pair

int

group details details of the either/or
group

Varchar (300)

Table 4. Structure of either group table and or group table



3.4 In abstract terms

From the above descriptions, our data in the abstract form is:

• Dataset Types: Text.

• Derived Dataset Types: Tables.

• Derived Derived Dataset Types: Adjacency List(Network).

• Data Types: Items, Attributes.

• Derived Data: Links, ordered attributes.

• DataSet Availability: Static.

4 TASK ABSTRACTIONS

4.1 In Domain Terms

These include but not limited to

• A student who wants to know if they satisfy all prerequisites for a
course.

• A curriculum planner who wants to analyze dependencies of
courses across departments.

• A student who wishes to plan their courses towards their degree.

• A student who loves to explore any graphs.

• A student who eagers to know how UBC works.

4.2 In Abstract Terms

We abstract the above task descriptions according to VAD book [8].

• Identify a node in the network

• Explore nodes in the network.

• Enjoy colorful nodes in the visualization.

• Discover node to node relationships.

• Record a network drawing.

5 SOLUTION

UBCourse Vis aims to provide an interactive way to help students
go through all prerequisites and make selections of them. Since
not all prerequisites are needed, students can first select part of the
prerequisites of the desired course (first-hop prerequisites) according
to requirements. When the requirements of first-hop prerequisites
are satisfied, second-hop pre-requites of the them will then pop out.
By carrying out this process iteratively, multi-hop prerequisites of
the desired course will be determined. Besides this, to help users
understand the overview of the course prerequisites, concentric view
and department view are provided.

To support tasks listed in Section 4, the main solutions provided by
UBCourse Vis are as follows:

• Interactive prerequisite selection: exploring and selecting prereq-
uisites of a single course hop-by-hop.

• Concentric view: A query-centric graph layout of a network.

• Department view: An interactive user-dependent grid layout of a
network.

Fig. 3. Navigation bar drop down list.

5.1 UBCourse Interface Overview

The UBCourse Vis user interface contains four main areas as indicated
in Figure 1. The Navigation bar (Figure. 1 (A)) on the top provides the
information about the different faculties that provides undergraduate
course and graduate courses in UBC. Each faculty has a drop-down
list to navigate to different departments. By clicking each department,
all courses provided by this department as well as their highly related
course will be presented in a new window as Figure 7. Besides, we
can also search the prerequisites of a specific course on the right end of
the navigation bar. The web page will then jump to a new UBCourse
interface showing detail about that course. Section 5.6 provides detailed
information about this function. Then, the main window split into three
sub-windows. Top-left window (Figure. 1 (B)) presents the interactive
prerequisite selection for users. Users can select optional courses to
satisfy all prerequisite requirements hop by hop. Bottom-left window
(Figure. 1 (C)) give full detail of the queried course, including course
name, credits, and the description of the course. Last, a concentric view
(Figure. 1 (D)) illustrates the knowledge hierarchy from the queried
course to its prerequisites. The VAD idiom used here is the Facet,
which split the window into multiple parts.

5.2 Navigation bar

Since there are a significant number of the department offering a various
course, it is meaningless, if not possible, to show all departments to
users at one time. Thus, we summaries departments into different
faculties and a drop-down list is provided with each faculty showing
all related departments. As shown in Figure 3, departments relating to
Science Faculty are summarized here.

Besides, we can also query prerequisites of a course by searching it
over the box in the top right corner as shown in Figure. 1 (A). A new
overview page will be generated with details about the new courses.

5.3 Interactive prerequisite selection

We designed an interactive prerequisite selection scheme to help
students have a better understanding of the full course prerequisite
relationship. This scheme will first present all one-hop prerequisites
of the selected course. Different colors in the text box are used for
encoding various faculties and colors in the container box are used for
indicating mandatory group and optional groups. Node-link diagram is
used for representing optional relationship. Besides, the horizontal
spatial position of text boxes within the container box is used for
encoding the mandatory selections.

Figure 4 represents the one-hop prerequisites of the course
CPSC340. The plain text description for this course is:



• One of MATH 152, MATH 221, MATH 223 and one of MATH
200, MATH 217, MATH 226, MATH 253, MATH 263 and one of
STAT 200, STAT 203, STAT 241, STAT 251, MATH 302, STAT
302, MATH 318, BIOL 300; and either (a) CPSC 221 or (b) all of
CPSC 260, EECE 320 and one of CPSC 210, EECE 210, EECE
309.

Fig. 4. One-hop prerequisites of CPSC340.

As shown in Figure 4, dark blue box and red box encoded for courses
from Faculty of Science and Faculty of Applied Science (Engineering)
respectively. Besides, light blue container box stands for the mandatory
group of course, which means all conditions in this box should be
satisfied. On the contrary, gray container box stands for either or
groups; these optional boxes are connected via edges. Only one
of these gray container box needs to be satisfied. For example, we
only need to take CPSC 221 to satisfy all either or groups. As for
orange boxes labeled with Group x, they are used for representing
the ’one-of’ relationships. Edges connect optional courses within the
group, and vertical spatial position encodes this optional relationship.
For example, the statement ’One of MATH 152, MATH 221, MATH
223’ is encoded as the group 1. One of these three courses is needed to
satisfy the requirement of this group.

After satisfying the prerequisites of the current course(s), next
hop prerequisites will pop out automatically. To illustrate further hop
actions, we select MATH 223, MATH 263 and BIOL 300 to satisfy
the mandatory group and CPSC 221 to satisfy ’Either-or’ group. The
result is shown in Figure 5. Since not all lower-level undergraduate
courses have prerequisites, the complexity of second-hop prerequisites
is much less than the one-hop. Only two groups of mandatory course
are required.

The VAD design idioms are used in this window: (a) En-
code; (b) Reduce; (c) Navigate; (d) Select. Among them, three
types of Encode method are used. Node-link Diagrams are used
for presenting the network data; colors are used to encode different
faculties and groups; spatial position are used to encode the relationship
of mandatory and optional courses. Besides, data reduction is also
introduced in this design study. Different courses might share same
prerequisites. Thus, there are duplicated courses. And selecting such
courses can satisfy multiple requirements. Such duplicated courses are
automatically chosen to reduce the number of selection for users to
take. Besides, already satisfied prerequisites will also be eliminated
automatically. Moreover, the ’Zoom in/out’ method of Navigation
in data manipulation are also applied in the system. In case of some
course have much too prerequisites, zoom in function can help students
to know the detail of the prerequisite network. Last, students can
select prerequisites based on their interest. After satisfying all the
requirements, further hops of prerequisites will pop out if applicable.

Fig. 5. Two-hop pre-requites with user interaction.

5.4 Course detail

In this window, course details are presented. Full course name and
detailed course description will be presented to help students know
more about the selected course. Due to the limitation of time, this
window can only provide the information about the querying course.
A ’Manipulation’ design idiom should be added to change the course
detail in this window when hovering over all listed courses. Such design
will help student to learn more about the prerequisite courses.

Fig. 6. Navigation bar drop down list.

5.5 Concentric view

Given a query, we present a concentric view in addition to course
selection on the right panel. With the queries course in the center,
its one-hop prerequisites are equally aligned on a concentric circle
surrounding the course. And the prerequisites of the prerequisites
are equally placed on a concentric circle with a larger radius than the
previous and so on. We do not simply draw all the edges at once
since the overall hierarchy of these courses is of more importance than
the particular relations within the network. A user may click on a
particular course to show relations with its prerequisites. The relations
are encoded directly by directed edges from courses to other courses.
The relevant VAD idiom is How : Encode where we map derived data,
the number of hops to a radial distance.

5.5.1 Edge Encoding

We use the width of edge to encode the derived attribute, the weight of
each prerequisite of a course. The calculation method is as follows. The
result is a weight vector for each course. This calculation method has
some advantages such as fast performance, but indeed, it also has some
limitations. Since the weights are used as the data to draw edges, it is
not difficult for users to recognize the difference of widths among edges.
Also, by the end of this calculation, we lose the logical information of
the prerequisite description, and our encoding only approximates the
original information. We address this issue further in the discussion
section.



Fig. 7. Computer Science Department

Data: Prerequisites of a course
Result: A weight vector of the course
for Course in all of groups do

assign weight = 1
end
for course in one of group do

assign weight = sizeof(group)
end
for course in either or group do

inflate its weight by 2;
process all of and one of similarly to above

end
Reassign each weight = max(weights) - weight;

Algorithm 1: Prerequisite Weight Calculation

5.6 Department view

The department view (Figure 7) is selected when a user clicks into a de-
partment in the drop-down lists. All courses offered by the department
and courses that are in the prerequisites description of these courses are
shown in a grid sorted horizontally and vertically by some heuristics.
The default heuristic is the course subject code. We also offer users
other heuristics such as the number of prerequisites. Due to the time
constraint, we do not implement different possible layouts such as
topological sort. Nevertheless, the above two heuristics approximately
lays out the department courses vertically so that the directed edges are
pointed upwards. As in the case of the concentric view, we do not draw
the edges up front. Users may investigate some particular relations in
the department. Thus we give users full control over the network. We
discuss the trade-off of leaving the drawing to users in the section 8.
The relevant encoding idioms are How : Encode in which edge width
encodes the derived data, the weight of each prerequisite respective to
its parent, and How : Manipulate where we can sort, select, move, add,
and select based on user inputs.

6 IMPLEMENTATION

To create UBCourse Vis, several third-party libraries are used:

• Cytoscape.js: Cytoscape.js are used primarily to render the de-
rived adjacency list into a graphic representation.

• Cytoscape-context-menus.js: An extension to Cytoscape.js that
is used in the department view to support user menus.

Besides, several programming language and tools are used:

• Python: Python is used to process plain text data and extract
useful UBC course prerequisite information. The processed data
were put into CSV files to be suitable for loading into the database.

• Google Chrome: Page source viewer and the webpage inspector
are utilized for debugging.

• MySQL: A web-based MySQL server is used for storing all the
data processed by Python.

• JavaScript:Using Bootstrap, CSS, and HTML to coding the front-
end of the webpage.

• PHP: PHP is used to transferring data from the back-
end(database) to the front-end (JavaScript). PHP is also used
extensively to convert text data into adjacency list form.

6.1 Work Breakdown
Jiahong worked on processing text data, setting up databases, creating
interactive course selection. Siyuan worked on creating website inter-
face, concentric view, and department view. Both of us have worked
on transforming raw text data to a network-like data structure. The
challenging part of the project is the fact that no structured data is
readily available. After the text processing of the UBC course catalog,
our data is still in text form. Hence a majority of our work lies in the
backend processing where given a query, we transform the text data
into an adjacency list and send the data to the frontend.

7 SCENARIO WALK THROUGH

We provide scenarios for both students and department organizers.

7.1 Scenario for students
In this scenario, John, a first-year Computer Science student in UBC,
decides to begin his university career as a Data Scientist. He is very
keen on the applications of Machine and tries to enroll in CPSC
340, Machine Learning and Data Mining in his third year. The most
complicated problem for him is that there more than 20 prerequisites



for him to choose, and it is hard for him to know what course he
should take in the first year. With the help of UBCourse Vis, he
starts with searching prerequisite details, then interactively select
interested prerequisite courses, using the information provided by all
three windows as shown in Figure 4 (B-D), and ends by deciding all
prerequisites of CPSC 340.

He then opened UBCourse Vis, typed the course in the search
box. UBCourse Vis provides the overview for the prerequisite
structure for him as shown in Figure 1. He then browses the directly
linked course in the concentric view to find if he can take minimal
prerequisites for CPSC 340. As shown in Figure 9, there seems to be a
link from CPSC 340 to CPSC 221 then CPEN 221 and finally connects
to APSC 160. Thus, he decides to select MATH 223, MATH 263,
BIOL 300, and CPSC 221 as the one-hop prerequisites and CPEN221
and MATH 220 for two-hop prerequisites. Then, he finally gets the
course that he needs to take in the first year, APSC 160. All selected
prerequisites are then listed vertically as indicated in Figure 8.

Fig. 8. All prerequisites after selection

Fig. 9. Course link view for student

7.2 Scenario for department organizer

Steve is the CS department head who wants to reorganize the courses
provided to undergraduate students. He tries to sort out the complex
relationships among courses and see if there are any duplicated courses.
He then navigates to department view as shown in Figure 3. Then he
clicks into the CPSC. All CPSC courses and their prerequisites are
displayed in the grid layout sorted by year level. He then right clicks on
the page on select sorting by the number of prerequisites. All courses
then transition to new places on the grid. He then clicks on CPSC 425,
then all prerequisites of the course including CPSC 221 and EECE 320
are drawn with connection marks towards CPSC 425. He noticed that
EECE320 is an old course, so he right clicks on that course and removes
it. He then clicks on CPSC 221 to further showing the prerequisites
of CPSC 221 as shown in Figure 7. After several rounds of clicking,
moving and removing, he right-clicks on the page and selects download
image. He is satisfied with his generated network and saves the image
for a presentation of department change on the prerequisites of CPSC
425 that is coming in a few minutes.

8 DISCUSSION AND FUTURE WORK

8.1 Encoding

Most prerequisites descriptions in UBC course catalogue [1] are free of
complex logical expressions. However, theoretically, these expressions
can become complicated as the number of course offering continue
to increase. Thus it becomes difficult to encode local relations of
some particular courses without compromising overall topology of the
network. While the correctness of local relations is essential, the goal
of the visualization is to understand the network from a high-level point
of view better. Therefore, we decide only to approximate the local
relations, that is, using directed edges with different widths. Whether
encoding using different widths is useful, distinguishing edge widths
sometimes is not an easy task. Even more, what does it mean for an
edge to be encoded with width w? The visualization system does not
explicitly mention the meaning of w. It is also possible to encode
logical relations entirely with the introduction of logical operator nodes,
where a node in the graph is either a course node or a logical node. A
course node is only connected with a set of logical nodes. We leave the
encoding scheme as a future work for other people. Initially, we start
with the project in the hope of encoding relations accurately and we end
up with the hue-coded containers (Figure 2), and the implementation of
containers is technically difficult. However, technically difficult does
not mean user-friendly. It is more helpful to talk to a few people and
extract some use cases from them rather than diving into the technical
part at first.

8.2 Layout

As far as UBCourse vis is concerned, it generates three different layouts,
vertical layout, concentric layout and grid layout. The vertical layout in
the interactive course selection panel and the concentric layout serves
the same purpose though they look different. Using vertical layout
strongly indicates the year level of the courses, or order of course
sequences. Arguably, it can happen that courses may not have space to
fit on the screen since there are more courses in each layer as we are
going from top to the bottom. The concentric view certainly illustrates
this point. However, a user usually clicks on a subset of courses
during the interaction and so not all courses on relevant to the user
thus we would not have many courses showing on the next layer. The
concentric view gives the big picture of the query course about all its
prerequisites. It is better than using the vertical layout in the case by the
previous argument. The grid layout is sorted using different heuristics
to approximate the result of the topological sort and at the same time
display all courses equally at once. We believe the vertical layout and
the concentric layout are easy to understand, but as for the grid layout,
it does not convey any strong information of the data since it equally
displaced the courses on the screen. The remedy of sorting heuristics
are helpful but still do not make the big picture standing out. If we had
more time, we would implement a topological sort layout algorithm.



8.3 Interaction
UBCourse vis heavily relies on the interaction to be useful. The course
selection view is purely interactive and based on the input of users,
it generates outputs accordingly. This scheme efficiently reduces the
number of courses showing on each layer. However, it may be helpful
to explain additional instructions in the form of tool-tips so that users
know what they are doing. The concentric view and department view
share the same interaction part in that relations are only drawn upon
user clicking. This interaction scheme is relevant in the concentric view
since the layout conveys a big picture directly and we would imagine all
edges are going from outside to inside. The edges are only necessary if
some relations are essential, but it is a big problem that we do not know
what users are specifically interested. This again made us reflect on the
importance of refining use cases first before going towards the design
and implementation. Some additional interactions are introduced in the
department view such as sorting courses, removing courses, and adding
courses. It becomes increasingly clear that we should also not display
all the courses at the start. Rather, displaying a few important courses
calculated by some heuristics such as node degrees, and then showing
other courses on user demand could be a more effective interactive
scheme. The idea of showing nodes on demand can be found in the
interactive visualization of genealogical graphs [7].

9 CONCLUSIONS

We present an interactive visualization system of UBC courses. For
querying on a particular course entry, we introduce an interactive course
selection scheme in conjunction with a concentric view showing the
knowledge hierarchy. For browsing the course catalogue of a depart-
ment, we present a flexible grid layout of department courses that is
capable both showing overview information and also detailed relations.

ACKNOWLEDGMENTS

The authors wish to thank Prof.Munzer and peer reviewers in CPSC
547 for their feedbacks. This work is supported by UBC.

REFERENCES

[1] Ubc vancouver calendar courses. http://www.calendar.ubc.ca/vancouver/pdf/UBCV ancouverCalendarCourses.pd f .Accessed :
2017−12−15.

[2] P. R. Aldrich. The curriculum prerequisite network: a tool for visualizing
and analyzing academic curricula. arXiv preprint arXiv:1408.5340, 2014.

[3] G. D. Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph drawing:
algorithms for the visualization of graphs. Prentice Hall PTR, 1998.

[4] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Algorithms for
drawing graphs: an annotated bibliography. Computational Geometry,
4(5):235–282, 1994.

[5] P. Gestwicki. Work in progress-curriculum visualization. In Frontiers in
Education Conference, 2008. FIE 2008. 38th Annual, pp. T3E–13. IEEE,
2008.

[6] J. Görtler, C. Schulz, D. Weiskopf, and O. Deussen. Bubble treemaps
for uncertainty visualization. IEEE transactions on visualization and
computer graphics, 2017.

[7] M. J. McGuffin and R. Balakrishnan. Interactive visualization of ge-
nealogical graphs. In Proceedings of IEEE Symposium on Information
Visualization (InfoVis) 2005, pp. 17–24, October 2005.

[8] T. Munzner. Visualization analysis and design. New York: A K Peters/CRC
Press, 2014.

[9] R. Pienta, F. Hohman, A. Endert, A. Tamersoy, K. Roundy, C. Gates,
S. Navathe, and D. H. Chau. Vigor: Interactive visual exploration of graph
query results. IEEE transactions on visualization and computer graphics,
2017.

[10] A. Srinivasan and J. Stasko. Orko: Facilitating multimodal interaction
for visual exploration and analysis of networks. IEEE transactions on
visualization and computer graphics, 2017.

[11] J. Zhao, M. Sun, F. Chen, and P. Chiu. Bidots: Visual exploration of
weighted biclusters. IEEE transactions on visualization and computer
graphics, 2017.


