
GazeVis: An Eye-Tracking Visualization Towards Predicting User
Distraction

CPSC 547 Project Report

Jan Pilzer, Shareen Mahmud, and Vanessa Putnam

Fig. 1. Overview of GazeVis interface showing a list of readings along with their assocatied fixation counts.The colors indicate regions
that correspond to normal reading, reading before self interruption, and invalid data.

Abstract—We introduce GazeVis, a tool to visualize data gathered from a PDF reader application called GazeReader developed in
another course. Our visualization aims to understand a reader’s gaze pattern before a self interruption occurs. We achieve this by
allowing users to interactively inspect gaze related features over time. Furthermore, our visualization incorporates a prediction that
determines if an amount of time is classified as normal reading or a reading before an interruption. In order to improve this prediction
result our visualization supports the users while inspecting and cleaning the data. By integrating data cleansing with our prediction
results, we enable our users to come up with a comprehensible way of understanding self interruption from gaze related features.

1 INTRODUCTION

Reading activities such as reading a scientific paper or an article require
the reader’s attention for a significant period of time. In today’s digital
era, we often read papers on our computers and it is not uncommon to
self interrupt by going to social media or by simply losing focus and
looking away. This causes the readers to procrastinate and to prevent
this it is important to understand the gaze pattern that is associated with
self interruption.

Eye tracking is a technique that measures people’s eye movement in
order to understand where they are looking and can therefore be used
to gain insights on a person’s behavior. The goal of our visualization
is to predict when a reader is likely to self interrupt. We define self
interruption as any activity that is not related to reading. In order to
achieve this, we collect eye tracking data through an existing application
called GazeReader. This application, built for another course, records

the eye movement of readers as they take part in a reading activity.
However, this data is not perfect and has some missing areas. As a
result, our second goal is to clean the collected eye tracking data in
order to improve our prediction results.

Our visualization gives us the ability to display 24 readings, read by
different users, that contain over a 100 distraction points. This design
organizes each reading into three chunks: normal reading, reading
before self interruption, and invalid area. Additionally, users can inspect
the data quality by looking at these chunks and manually exclude any
low quality region. They can navigate to the predict view and run a
prediction on the cleansed data. Finally, as the prediction accuracy is
dependent on the number of inputs to the classifier, we give users the
option of manually selecting a chunk size for partitioning the data into
inputs for the prediction.



The rest of the paper is organized as follows: Sect. 2 discusses the
related work in eye tracking domain. Sect. 3 provides details on our
data and the tasks that we want to carry out with our visualization.
Sect. 5 describes our implementation followed by our results, future
work, and conclusion in Sect. 6, Sect. 7, and Sect. 8.

2 RELATED WORK

2.1 Eye tracking to predict distraction
Work related to eye tracking has grown over the last decade. Eye
movement data that show fixation and saccades can be used to estimate
a user’s cognitive load [9]. Tsai et al. used fixation durations to
examine attention [7] and an increased cognitive load is likely to cause
user distraction [2]. For this reason the designers of GazeReader
hypothesize that when readers are cognitively weighed down, they tend
to trigger self interruption. This prior work only suggests that gaze
pattern can be used to indicate distraction but does not propose any
visual representation directly connecting the two.

2.2 Eye tracking visualization
The importance of visualization for a successful analysis of eye tracking
data has been confirmed in different contexts [6,8]. Blascheck et al. [1]
show an overview of the existing eye tracking visualization approaches
collected from various literatures. However, these visualizations are
typically static that support little interaction and focus on areas of
interest (AOI) that participants look at. On the other hand, the project
whose data we are visualizing tries to find universal patterns that apply
independent of the current display space. This is because we do not
restrict the users to specific readings. Additionally, we do not use the
traditional gaze plot representation for eye tracking since we want to
show gaze features over time. A gaze plot does not allow us to view
this in our visualization since there is a large scale of fixations and
saccades over time. Therefore, displaying a gaze plot of features in
this scenario would lead to occlusion. We also add interactivity to our
visualization for these derived metrics.

3 DATA AND TASKS

We will describe our tasks and do a data abstraction following the
idioms used in Visualization Analysis and Design. [3]

3.1 Domain Data: Eye Tracking
In the eye tracking domain, data is collected in terms of fixations
through eye-tracking hardware. Fixations can be defined as maintain-
ing the visual gaze on a single location. There are quite a few features
that can be derived from these fixations. To start, an interesting feature
of fixations in eye tracking are known as fixation count. This con-
cept is informative of the number of fixations a user has for a fixed
amount of time. If there is a high fixation count per unit time, one
could conclude that the user was frequently looking from one place
to the next. Similarly, if there is a low fixation count per unit time
one could conclude that a user was infrequently looking around and
fixating on certain areas for a period of time. This idea brings us to
our next interesting feature of fixations which is known as fixation
duration. This feature can be thought of as the length of time spent on
an individual fixation. Longer fixation durations could imply less user
activity (zoning out) compared to shorter spurts of fixation durations
across a task. However, we could also interpret these longer fixations as
more focus in a user interaction. Slight nuances such as these make eye
tracking data an interesting information source to investigate. Another
feature specific to the eye tracking domain is called a saccade, or in
other words the distance from one fixation to another. Saccades are
derived from two consecutive fixations to connect a gaze pattern (see
Fig. 2). The definition of gaze pattern will be addressed in more detail
later on, but is essentially used to infer users’ intention or goal within
a particular context depending on where they are looking. Similar to
fixations, saccades also have a duration component to measure how
long it takes to get from one fixation to another. Additionally, saccades
are also measure by their length. Longer saccades imply a user fixates
in areas of greater distance, whereas short saccades imply that a user is

Fig. 2. Saccade based eye measures1

looking (or fixating) in locations that are closer together. Furthermore,
eye tracking data also consists of saccade angles or the angle between
the saccade and a horizontal (see Fig. 2). When reading a document,
one would expect most saccades to go the right and down since reading
is done from left to right in all text read by participants. However, if
there are many saccade angles going left or upwards this could indicate
a user has been re-reading the same sentence during a reading task.

3.2 Data
The data for our project was collected from the GazeReader application.
Connected to a Tobii eye tracker, the application was able to record
fixations as well as self-interruptions for each user reading across time.
Thus, GazeReader supplied our visualization with gaze features, tagged
interruptions, and predicted inputs for our data. These three data types
were grouped by reading and assigned over time. We use these two
key attributes (reading and time) to organize the rest of our data and
attributes for this project.

3.2.1 Ordered key attribute: Reading
When interacting with GazeReader users were not bound to a specific
reading and could choose anything they would like to read in PDF form.
This made it important to add an additional key attribute to our data
which was the name of each reading.

3.2.2 Ordered key attribute: Time
Data from GazeReader was dumped into a log file for every event with
a precision of milliseconds. Given that many fixations can happen per
second we can aggregate fixation and saccade events into bins of one
or more seconds. This allows us to appropriately bin gaze features to
more summative values. By binning events per second this allows us to
quickly see durations of time where a fixation or saccade is present or
not. In consequence of this, each reading was chunked into time slots t,
determined by a user inputed timesize value (discussed in more detail
in Sect. 3.3).

3.2.3 Categorical attribute: reading type
GazeReader collected fixations and self-interruptions during a reading
activity and based on this information we segmented our data into
three categories: normal reading, reading before an interruption, and
invalid. Before we could tag inputs as reading or reading before an
interruption, we wanted to come up with some way of marking data that
was not of sufficient quality to be included in predicting user distraction.
Therefore a threshold of time after an interruption was tagged is invalid
until the next fixation event occurred. From there, a self-interruption
was determined based on the timestamp of interruption events in the
gaze reader log file.

3.2.4 Quantitative Attributes: gaze features
Originally, the only gaze data obtained from the eye tracker was purely
fixations. However, prior work in another course took these fixations
and derived them into related fixation count, fixation duration, saccade
length, saccade duration, and saccade angle and fed them to a prediction.
We binned these features to our timesize chunk t to record values for
features from different inputs of time. A discussion on the different
possible interpretations if what the value of these features could mean
can be found in the eyetracking domain section of this work.

1https://www.cs.ubc.ca/ skardan/EMDAT

h


Table 1. What-Why-How framework

System GazeVis

What: Data Multidimensional Table:
- Ordered key attribute: time
- Categorical key attribute: reading
- Quantitative attribute: gaze features
- Categorical attribute: reading type
- Categorical attribute: prediction result

Why: Tasks Analyze gaze pattern,
Locate problematic data,
Query cleansed data with prediction

How: Encode Sparklines and Steplines for the fixation events,
Area marks to color reading chunks by type

How: Facet Partition into two views with same encoding,
overview-detail.

How: Reduce Brush a sparkline area and zoom in
Scale 24 Readings, 100+ interruptions

3.2.5 Categorical attribute: prediction result
After gaze features were computed, they were fed into a prediction to
be classified as a normal reading, or reading before and interruption
event. Therefore each input (excluding inputs tagged as invalid) were
labeled according the result of the prediction and whether or not it was
correct.

3.2.6 Dataset Type: Multidimensional Table
Following the discussion on our data’s two keys, and associated at-
tributes we conclude that our data forms a multidimensional table. This
is where our key attributes are time of interaction (ordered) and reading
(categorical). For each reading we break up our data into time size
chunks, with associated attributes: gaze features (quantitative values),
reading types (categorical), and prediction results (categorical).

3.3 Task Description
As the eventual goal of the underlying project is to predict and prevent
self interruption, one important task in the visualization is viewing the
results of a prediction-run on the gaze features. Preferably this view
includes the features used in the prediction so that potential patterns
could be seen. Predictions can be run with varying values for the
parameter t, which defines the length of a chunk of the timeseries
in seconds. A user wants to change this parameter in the interface
and re-run the prediction directly to see the effect it can have on the
prediction results. As the number of chunks before a self-interruption
are limited, using a larger value for the length of a chunk changes the
ratio of normal reading to reading before an interruption. When the
value gets too large however, a chunk tagged as before an interruption
contains data that should be considered normal reading.

Before good results can be achieved, we found it necessary to look
at the data quality in detail and trim certain parts manually. Cleaner
source data significantly increases the quality of the prediction. A user
needs a quick overview to judge the data quality of a given section in
comparison with the overall quality. Having identified sections with
missing or bad data, the user wants to mark this selection as as invalid
and retry running the prediction.

In terms of the visualization framework, we are creating an applica-
tion that allows a user to analyze, annotate, and compare reading data.
The annotation task involves analyzing the presented data, locating sec-
tions considered to be invalid, and annotating those. Once that task is
completed, the second task involves analyzing prediction results, com-
paring features, and possibly discovering patterns of specific feature
values common to all chunks predicted in a certain way.

4 SOLUTION

4.1 First Attempt
The overall goal of GazeReader is to be able to predict when a user’s
self-interruption is about to occur based on gaze features and prior self

Fig. 3. (A) shows an overview of the readings from which users can
select a particular reading for cleaning. In (B) this reading is shown in
detail where the user can clean the data. Upon returning to (A) users
can run a prediction on the clean data and go to (C) which shows the
predicted gaze features. From (C) users can choose to rechunk the data
by going to (D) and then return to (C) to rerun the prediction on the new
chunk size. This workflow can be repeated.

interruptions. Previously we suggested a visualization with multiple
views that allowed us to select different user distraction points in time
to view a a fixation count chart, bubble gaze plot, and heatmap. We
made significant progress with this original plan until we realized
two problems. First, our view only allowed us to look at chunks
of time before self-interruption. This was an issue since in order to
understand a pattern associated with a self interruption, we would
also need to understand the pattern associated with normal reading
for comparison. Second, we realized that our data log files from the
eye tracker were unclean and was missing gaze information for large
chunks of time. This is a problem not only for data investigation, but
also for predicting anything related to reading and self-interruptions in
the future. Therefore our first attempt may have been too ambitious,
and thus our final visualization was reconstructed to address these two
problems.

4.2 Final Solution
Our final visualization addresses two focal points:

1. The capability of cleaning unwanted data points and removing
them from a prediction.

2. The ability to analyze a comparison between inputs tagged as
normal reading, and reading before an interruption.

Keeping these above points in mind we created our visualization to
be interactive in order to help with tasks that are difficult to visualize
without an external representation. Therefore, our visualization has
a workflow that allows users to navigate Fig. 3 different views: data
overview, data cleaning, and data prediction results. We will now
describe each of these views in the following sections.

4.2.1 Data overview
This view highlights key attributes time and readings as well as reading
type and a single gaze feature: fixation count. Readings are displayed



Fig. 4. Data Cleansing: brush and zoom to inspect data in detail and trim
invalid portions.

in a list view with a scroll bar for navigation. Furthermore the duration
for each reading is displayed on the x-axis.

Sparklines: We use sparklines to record fixation count over time.
We display fixation count in this overview since it is the best metric
for determining if a portion of data is invalid or not. If there is a zero
fixation count for a length of time we can conclude that this piece of
our data is invalid.

Color: We choose color to encode our three categorical attributes:
normal reading (blue), t seconds before and interruption (green), and
invalid (red). For these colors we use light saturation to encode the
background of each sparkline. Additionally, we extend the green color-
ing to be taller than blue and red portions. This is done in order to make
chunks before an interruption stand out more since they are usually
smaller in width and therefore more difficult to see.

4.2.2 Data Cleaning

In order to analyze and tag invalid data segments, we have a navigation
component from the list of readings to a view where a single reading
can be analyzed in more detail. For this we opt for a different view
since when cleaning a user would only be interested in a specific area,
rather than an overview of all data. We utilize the brush and zoom
feature for this detailed inspection and manual cleaning annotation.

Brush and zoom: Our brush and zoom feature carry over the same
sparklines and color encoding from the data overview. This view
contains a “context”, or a panel containing the entire reading over
time with encodings, as well as a “focus”, or a larger display showing
the selected region in a zoomed in detailed view. There are two user
interactions that can allow a user to zoom in on the reading. First by
brushing from the “context” view, and second by double clicking or
zooming in on the “focus” view.

In order to cleanse data a user must select an unwanted area using
either of the options mentioned above. Next, by clicking a cut button in
the top right corner the user will be marking an unwanted area as invalid,
and cutting this portion out of the data. We choose this feature to allow
for intricate analysis of the data quality by cleaning out portions of the
data that are invalid or unusable.

4.2.3 Data Prediction Results

Similar to the data cleansing view, we made a design decision to display
prediction results in a different view for a more detailed analysis of fea-
tures. Additionally, since we do not want invalid data in our predictions
we removed these invalid chunks from view. This view also contained

Fig. 5. Prediction View: examine classified results from gaze related
features for normal readings and readings before an interruption.

an overview of prediction accuracy, precision and recall for the entire
dataset as well as each individual reading.

Also, since there are many gaze features and a limited amount of
pixels, we opted for an accordion drop down list displaying each of
the features included in the prediction. The design decisions for these
feature encoding will be discussed in further detail in the following
sections.

Steplines: We use steplines to record gaze features over time. Aside
from fixation count each step encodes an average where this value is
calculated based on the value event of the feature for each second over
the number of seconds in every chunk.

Color: Since the invalid data category was not displayed in this
view we choose color to encode our two categorical attributes: normal
reading (blue) and t seconds before and interruption (green). Addition-
ally this view also contained information on misclassified time chunks
tagged by small tick marks in gold.

5 IMPLEMENTATION

This visualization was implemented following a traditional client-
server-architecture with the server being split up by responsibility.
The raw data was preprocessed in multiple steps before being used in
the visualization.

5.1 Preprocessing

The data gathering application GazeReader saves the collected data as
events in a log file. After parsing the plain text log files, fixation events
are grouped into fixations and saccades are calculated. The timestamps
of self-interruptions are extracted and some sections are marked as
invalid automatically. Processed data at multiple steps is saved to be
used by the visualization or the interactive components later. An initial
chunking and prediction is performed with a default value for t. All
preprocessing steps are done using Python2, the prediction uses models
from the Python library scikit-learn [4].

5.2 Server components

The server part of this visualization has three responsibilities: Serve
the frontend code to be view and run in the browser, serve the data files
to the application, and listen and respond to the interactive abilities of
the application.

2https://www.python.org

h


Fig. 6. Chunk Size: Repeat prediction on different chunk sizes and
analyze different accuracy results.

A basic Node.js3 Express4 server is used to statically serve the
application code, while a Python Flask5 server statically serves the data
files. This separation is not strictly necessary as both components would
be capable of fulfilling their combined requirements, but rather born
from the desire to have independent components with the possibility to
develop and test independently.

The interactivity is achieved using WebSocket technology, which
allows for bidirectional communication enabling the server to run poten-
tially lengthy calculations without concern for a timeout of the HTTP
request. The WebSocket server is implemented in Python Autobahn6

using the Twisted networking engine7. This server receives messages
with manually marked invalid time sections and new chunk sizes, and
asynchronously performs the required computation steps. For the for-
mer kind of message the marked sections have to be merged, the chunks
of this session have to be recalculated, and the prediction for all ses-
sions has to be repeated as any change of the input could change the
prediction result for each session. For the latter kind of message, all
sessions’ chunks have to be recalculated as well as all predictions run.
Once a result for one session is available the server sends a message so
the frontend application can reload that particular result.

5.3 Frontend Application

The visualization is implemented as a web application. The popular-
ity of web technologies for user interfaces has increased significantly
in recent years [5] and many libraries are available for providing vi-
sualization in web applications. In order to achieve a professional
look-and-feel the application framework Angular8 is used in combina-
tion with Angular Material9. The sparklines and steplines are rendered
as SVG using D3.js10.

The application is divided into smaller, nested component that allow
for a separation of concerns and controlled, documented data passing.
For each of the pages, one component is responsible for the page
layout while components responsible for the lines are repeated for each
reading.

3https://nodejs.org
4https://expressjs.com
5http://flask.pocoo.org
6https://crossbar.io/autobahn
7https://twistedmatrix.com
8https://angular.io
9https://material.angular.io

10https://d3js.org

Table 2. Breakdown of Work

Task Jan Shareen Vanessa

Design 33% 33% 33%
Data preprocessing 100%
Python WebSocket Interaction 100%
Frontend Scaffolding 100%
Sparklines 100%
Linked Colored Area Marks 100%
Steplines 100%
Chunk Size Selection 100%
Brush-and-Zoom 50% 50%
Slides 33% 33% 33%
Writing Report 33% 33% 33%

AppComponent
|-- ListViewComponent

‘-- ReadingComponent
|-- SessionDetailComponent
‘-- PredictionListComponent

|-- PredictionNumbers
‘-- Prediction

Each component requests the concrete data required to fulfill its
responsibility using a centralized service which handles the details of
the communication to the servers mentioned in Sect. 5.2. When notified
that updated data is available, the components reload the data and
rerender the displayed visualization. Placeholder loading animations
are added to indicate ongoing processing tasks.

6 RESULTS

The visualization solution proposed here is going to be used by the
Gaze Reader team to explore and make sense of the large amounts of
data recorded during the eye tracking experiments. We will therefore
describe the scenario of use from the perspective of Sam, who is Jan’s
teammate in that project.

To start Sam looks at the overview list of readings to scope out any
invalid portions of the data. He discovers an area without any fixation
counts recorded and wants to make sure this area is not included in
his data prediction. He selects this reading and navigates to the data
cleaning view to brush and zoom, cleaning the invalid portion. When
he is finished he navigates back to the overview list of readings and
continues this process until he is satisfied with the cleansed data.

After cleaning, Sam runs a prediction on this improved dataset. This
enables him to see the fixation and saccade attributes associated with
each reading and understand which chunks of the reading are correctly
classified as normal reading and reading before interruption, as well
as which chunks are incorrectly classified. He then changes the chunk
size parameter in this view and reruns the prediction to see the effect it
can have on the prediction results for each reading. However, before
each run Sam has to record the accuracy results on paper if he wants to
compare them with the results he obtains after rechunking. Finally, he
inspects the prediction results and the gaze features to understand the
connection between user interruption and its associated saccade and
fixation patterns.

7 DISCUSSION AND FUTURE WORK

Our work in this project has demonstrated how GazeVis can be used
in scenarios where it is important to understand a reader’s gaze pat-
tern. Our hope is that by providing detailed views of a reader’s gaze
features we can work towards predicting self interruption, and thereby
prevent a self interruption from happening in order to increase reader’s
productivity.

The strength of our work lies in the fact that we have taken the data
quality into account. Often we try to come up with a visualization
using the data that we have, and focus on the main tasks that users can
perform. As a result users often have little knowledge about the quality

h
h
h
h
h
h
h
h


of data that is being presented to them. With GazeVis, we not only
show the users the predicted fixation and saccade attributes associated
with self interruption, but also keep the user in the loop by letting them
examine the data quality and run the prediction on what they believe is
“good” data. We believe this enhances the credibility of our system.

The limitations of our work lie both in the learning curve associated
with system and a few of our design choices. Although GazeVis has
been designed to help users understand when self interruption is likely
to occur, the visualization itself is not self explanatory. Users need to
have a certain amount of background knowledge in the eye tracking
domain in order to make sense of the visualization and its features.
This involves a basic understanding of machine learning classification
such as using varying chunk sizes for inputs and the data cleaning
component.

Additionally, even though we believe that the manual data cleaning
component is a strength of our system, a certain degree of automatic
cleaning needs to be added so that users do not feel overwhelmed. In
future work, we would be interested to incorporate more intelligent
automated cleaning to reduce the amount of manual annotation.

Furthermore, we have encoded saccade angle using a step chart
which although shows how the saccade angle values vary over time.
However, this is not the best representation and by instead switching
to a mark that is more representative of an angle we may be able to
show a more traditional representation that users are likely to be more
familiar with.

Additionally, to address the steep learning curve we would like to
add a navigated tour of the interface so that the tasks and interactions
could be made more clear to the users.

Currently, although our predict view shows the features with differ-
ent detailed charts, users cannot zoom in to see the chunks more clearly.
Therefore, a zooming option in this view would be useful to add.

When we had started out with this project we had little idea about
how visualization could help us understand a problem better. This
project lead us to realize that having an interactive visualization in front
of us can help with tasks that are difficult to analyze without external
representation. In the beginning of our project we had not paid attention
to the data quality and had started coding without fully considering if
what we were showing the users would be absolutely useful. Hence, we
ended up losing a considerable amount of time working on a solution
that we did not eventually keep. Therefore, we have realized that it
is important to reiterate over the design choices that we make before
going ahead with its implementation.

8 CONCLUSIONS

We propose GazeVis, an interactive visualization for eye tracking data
to predict self interruption. Our visualization allows users to inspect
categorical attributes of our readings as normal reading, reading before
an interruption, and invalid time chunks. We also provide interactive
annotation capabilities that allow users to mark unwanted areas of the
data as invalid. Moreover, our design incorporates predictions of time
chunks to be classified as normal reading or reading before an interrup-
tion. Hence, by adding data cleaning to improve our prediction results,
we offer a comprehensible way of understanding self interruption from
gaze related features.

ACKNOWLEDGMENTS

The authors wish to thank our professor Tamara Munzner for her guid-
ance throughout this project. We are also grateful to Sam Liu for
helping develop GazeReader and being the persona for our scenario.

REFERENCES

[1] T. Blascheck, K. Kurzhals, M. Raschke, M. Burch, D. Weiskopf, and T. Ertl.
State-of-the-Art of Visualization for Eye Tracking Data. In R. Borgo,
R. Maciejewski, and I. Viola, editors, EuroVis - STARs. The Eurographics
Association, 2014.

[2] N. Lavie. Attention, distraction, and cognitive control under load. Current
Directions in Psychological Science, 19(3):143–148, 2010.

[3] T. Munzner. Visualization Analysis and Design. A K Peters Visualization
Series. CRC Press, 2014.

[4] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-
learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

[5] M. J. Rees. Evolving the browser towards a standard user interface archi-
tecture. Aust. Comput. Sci. Commun., 24(4):1–7, Jan. 2002.

[6] B. Sharif, M. Falcone, and J. I. Maletic. An eye-tracking study on the role of
scan time in finding source code defects. In Proceedings of the Symposium
on Eye Tracking Research and Applications, ETRA ’12, pages 381–384,
New York, NY, USA, 2012. ACM.

[7] M.-J. Tsai, H.-T. Hou, M.-L. Lai, W.-Y. Liu, and F.-Y. Yang. Visual
attention for solving multiple-choice science problem: An eye-tracking
analysis. Computers & Education, 58(1):375–385, Jan. 2012.

[8] H. Uwano, M. Nakamura, A. Monden, and K.-i. Matsumoto. Analyzing
individual performance of source code review using reviewers’ eye move-
ment. In Proceedings of the 2006 Symposium on Eye Tracking Research
&Amp; Applications, ETRA ’06, pages 133–140, New York, NY, USA,
2006. ACM.

[9] Q. Wang, S. Yang, M. Liu, Z. Cao, and Q. Ma. An eye-tracking study
of website complexity from cognitive load perspective. Decision Support
Systems, 62:1–10, June 2014.


	Introduction
	Related Work
	Eye tracking to predict distraction
	Eye tracking visualization

	Data and Tasks
	Domain Data: Eye Tracking
	Data
	Ordered key attribute: Reading
	Ordered key attribute: Time
	Categorical attribute: reading type
	Quantitative Attributes: gaze features
	Categorical attribute: prediction result
	Dataset Type: Multidimensional Table

	Task Description

	Solution
	First Attempt
	Final Solution
	Data overview
	Data Cleaning
	Data Prediction Results


	Implementation
	Preprocessing
	Server components
	Frontend Application

	Results
	Discussion and Future Work
	Conclusions

