

I Want to Believe: A Visualization of UFO Siting Reports
Theodore Smith1 Hailey Guillou2

1. Bioinformatics, University of British Columbia 2. Computer Science, University of British Columbia

Abstract
In this work we present an interactive visualization tool for examining UFO reports. The high level goal is to
support 1) a geographic summarization of UFO sightings and 2) a linguistic summarization of these reports. By using manipulation tools,
such as filter and zoom, we show how our visualization can aid curious individuals in gaining an insightful summary of the thousands of UFO
reports available. Corresponding scenarios are provided for each task and an in depth review of potential future work is outlined.

INTRODUCTION
Have you ever looked into the night sky and seen something
unusual? Perhaps it was a star or an airplane, but what if it was
actually something from another planet? While some people may
see something suspicious in the sky and keep going on with their
lives, others feel the need to report this strange event to the
appropriate authorities.

The National UFO Reporting Center (NUFORC) was founded in
1974 and since then its primary function has been to receive,
record, corroborate, and document reports from individuals who
have witnessed unusual, possibly UFO-related events. [1]
NUFORC has had a 24-hour hotline available since 1974 and in
the past 20 years has expanded to receiving reports via fax, email,
and the organization’s webform. These reports are stored in a
publicly available database and are indexed by date of sighting,
shape, state, and date posted. The reports range from serious
reports to obvious hoaxes and while mostly reported from within
the United States, there are reports of sightings throughout the
world.

Initially when looking through the data, we thought it would be
interesting to plot the reports geographically based on population
density with the intention of searching for trends over time in
terms of location, shape, and duration. With some investigation
we found that current visualizations tend to address the question
of who the people making reports are and where they are from.
Trends in shape over time was also a popular visualization, as
well as what time of day and what month have the most sightings.
Upon gathering this prior work, we decided that while mapping
the reports is still of interest, we also wanted to do some sort of
textual analysis of the summaries of the reports in aggregate. We
came to this conclusion after spending some time with the raw
data and seeing that the text summaries often paint a more vivid
picture of the encounter than the quantitative and categorical data
possibly could.

What we propose in this work is a dual-view interaction tool
which provides a geographic view that plots the reports on an
interactive map and a textual summary of the aggregated reports.
We use filters to reduce the number of items on the map based on
shape, date range, time of day, and duration. The map view can
be zoomed in to limit the visible data points. When there are
multiple markers in a small area in the map, they are clustered

together and encoded by hue to indicate the density of the
markers within an area. Once a view on the map has been
established, textual analysis can be performed on the visible
reports using SentenTree, a visualization tool originally intended
for text-based social media posts (tweets, etc.). The appearance of
each SentenTree report is similar to a word cloud with the
additional benefit of preserving an aggregated visual
representation of sentence structure.

DATA AND TASK ABSTRACTIONS

Data description

Data were drawn from a scrubbed version of the NUFORC UFO
sighting reports data set found on the machine learning and data
science platform Kaggle [4]. This data set represents 80,327
reports from the original data set of 88,875 reports, with cases
dropped due to missing location as well as missing or erroneous
time. This data set also features a standardized form of the
duration of each sighting, with time reported in seconds rather
than in the mixed formats found in the original data set.
Geographical coordinates were generated for each report using
geolocation based on the city, state, and country fields in the
original data. Comments were retained in full-text form without
editing.

These data were subjected to a second round of cleaning in which
reports containing missing or corrupted information were
dropped. This was accomplished using Python’s pandas module
by means of importing directly from the original scrubbed CSV
file to a pandas dataframe in order to efficiently check the number
of columns in each row, as well as the contents of each column.
An additional 2303 cases were dropped according to these
conditions, resulting in a final data set of 78,024 reports.

Two variants of geographical encoding of the data were
employed, both of which were drawn directly from the
coordinates provided in the data set. At low zoom levels, where a
large number of reports were visible within the map frame,
individual reports were clustered using Leaflet’s native
MarkerCluster plug-in. Using this encoding, reports were grouped
into color-coded point marks. These marks are uniform in size
and vary in hue based upon the number of points contained within
each cluster. Small clusters are represented with green marks,

medium sized clusters are represented with yellow marks, and
large clusters are represented with orange marks. Due to the
smaller number of visible reports at higher zoom levels, these
clusters inherently become smaller as one zooms in on the map.
Resultantly, clusters are regenerated at each zoom level and the
relative cluster sizes are recalculated, producing a new
distribution of cluster colors. At fine zoom levels, cluster markers
are replaced with individual point markers for each report. These
point markers resemble a map pin with the tip of the marker
extending from the latitude / longitude coordinate pair for each
report.

Upon clicking a point marker, a detail view is generated for the
clicked report. This field contains text describing the date, shape,
duration and comment associated with the specific report. These
values were drawn from the data set and formatted using HTML.

SentenTree results are presented using the tool’s default
configuration with input drawn from the comment field of reports
featuring coordinates which fall within the geographical bounds
of the map frame at the time of SentenTree generation.
SentenTree encodes the frequency of each word in the input data
using size, and indicates aggregated sentence structure using line
marks between the words.

Our tool also features a control panel utilized to specify filter
settings. Each filter category corresponds to a field within the
data. Specifically, we incorporated filter categories for shape,
date, time, and duration. Due to the categorical nature of the
shape field in the data set, we elected to constrain user input using
checkboxes corresponding to the shapes described by NUFORC.
Date is defined in terms of year, month, and day, while time is
defined in hours and minutes. Both of these filter settings
correspond to the datetime field in the data set. Duration is
defined in seconds and corresponds to the standardized duration
field in the data set. An additional filter field was provided for
keywords and phrases, which corresponds to the text-based
contents of the data set’s comment field.

Task description

While much can be learned about the quantitative nature of
NUFORC sighting reports through simple descriptives such as
report density based on date, time, location, and shape, such an
analysis overlooks the subjective experiences of the reporters.
UFO sightings are neither consistent nor easily explained and,
consequently, no two reports should be considered perfectly
comparable. Our main goal in producing this visualization was to
provide greater access to the quantitative properties of each report
as a means for uncovering hidden features and commonalities in
the experiences of the reporters. We view this as a two-fold task,
wherein the data set can be intuitively explored using the more
consistent features of each report such as time and location, and
examined in greater detail using the linguistic features of the
reports.

Our approach revolves around the separate, but related, tasks of
representing the data in a spatiotemporal format as well as

representing the linguistic relationships between isolated report
descriptions. The data are geographically mapped based upon the
locations specified in the reports. Users control the reports which
are included in the linguistic analysis by means of navigating
around the map using zooming and panning. Additionally, the
user has control over the intervals of time and duration they are
interested in viewing through the filter settings available in the
control panel of the tool. Users also have control over the
qualitative properties of filtered reports by means of a categorical
shape filter as well as a keyword filter. This enables users to
specifically target subjective types of UFO sightings based on the
personal experiences of the reporters. The ultimate function of
this component of our tool is to allow users to refine the complete
data set of reports to a smaller, more targeted subset of reports
which exhibit an enrichment of linguistic features of interest via
an intuitive, geographically-driven interface.

Due to the large number of reports and highly variable comments,
we deemed manual comparison of the subjective qualities of each
report to be arduous and inefficient. Based on this observation,
we were motivated to produce a visualization which provided an
aggregated view of the comments. To this end we incorporated a
SentenTree frame, which aggregates the targeted reports and
generates a summary of their linguistic content. Moreover, the
output of the SentenTree algorithm can be cloned for each
combination of filters settings and geographic window to allow
direct comparison to the output generated from another search.
These searches can be performed iteratively by using the
SentenTree output to manually specify a new filter configuration.

-
RELATED WORK

UFO Data

The most sophisticated prior work we uncovered in the
visualization of UFO sighting reports is likely the infographic
provided by John Nelson of IDV Solutions [7]. This post includes
a variety of visualizations of UFO sighting reports, each intended
to convey a different property of the data. The first choropleth
map shows a simple ratio of sightings per capita. The second
map shows a bivariate mapping of sightings in the color
dimension (dark slate for low-sightings and bright green for high-
sightings) and population density in the opacity dimension
(denser populations are more transparent). Additionally, trends in
reported shapes are provided in the form of line graphs indicating
prevalence over time. While this presentation is informative at the
descriptive level, it lacks interactivity and fails to incorporate
comments.

Another visualization, found on metrocosm.com [8], breaks down
the data set by the number of witnesses for each UFO sighting.
This was accomplished by comparing the locations and dates of
the sightings, however it does not incorporate comments when
determining whether multiple coincidental reports truly
correspond to the same event. This visualization provides less
summarial information than Nelson’s infographic, but
compensates with interactivity and the ability to observe
individual sightings along with associated comments.

Linguistic Analysis

Word clouds are likely the most commonly known text
visualization. They began as “tag clouds” on websites that would
highlight the most popular tags from posts on the website. The
visualization grew in popularity as it began to be used in other
text documents. Since it no longer just applied to tags, “word
cloud” became the commonly known term. A common variation
of this technique is Wordle [3], which automatically generates
layouts that are aesthetically pleasing with words displayed
horizontally and vertically. The Wordle model was an interesting

starting point for what we wanted to analyze, but the word cloud
itself did not provide enough context about what exactly is in the
summaries.

On that basis we elected to utilize SentenTree. SentenTree was
originally developed for the analysis of Twitter data, and
represents an improvement over the word cloud approach in that
it maintains a visual representation of sentence structure. In doing
so, SentenTree provides a sense not only of commonly occurring
words within a data set, but also provides an impression of the
meaning of those words by arranging them in an order driven by
the semantics of the input data.

Solution

Table 1.

What: Data Table. Items: UFO sighting reports. Attributes: date/time of sighting, shape
(categorical), duration (quantitative), city (categorical), state(categorical), summary,
date posted

What: Derived Latitude and longitude coordinates, duration normalized to seconds

Why: Tasks Explore trends in the textual summaries of UFO reports

How: Encode Geographic view with hue encoding for number of reports in a cluster area; directed
node-link diagram with size encoding for the word count

How: Facet Multi-form: overview-detail

How: Reduce Filtering items using widgets and filters onto the map view

How: Manipulate Select (individual points on the map for a detail view); geometric zooming on the map

Scale Tens of thousands of items

All features of our tool were produced using JavaScript, HTML, and CSS. Mapping of reports was accomplish using Leaflet and MarkerCluster
while linguistic reports were produced using SentenTree, all three of which are JavaScript libraries. Visible reports were controlled by means of
specifying filter conditions and navigating the map, while the SentenTree output was directly linked to visible reports. In this fashion, we produced
an interactive means for controlling linguistic analysis of the data set. Further exploration of the linguistic contents of the data set was facilitated
by incorporating the ability to clone the SentenTree output after a search, enabling comparison of those results to a subsequent search.

Implementation

Geographical mapping was accomplished using Leaflet [5].
Leaflet is an open-source JavaScript mapping library, similar in
some ways to Google Maps with the advantages of allowing
manipulation of the underlying code as well as not being bound to
a specific map projection. We considered a number of map
projection options before ultimately selecting OpenStreetMap,
primarily for aesthetic reasons. An additional consideration
underlying this choice was the fact that OpenStreetMap was
founded in 2006 and continues to have a strong user base. This
inspires confidence that our tool will remain functional for the
foreseeable future.

In order to plot the reports using Leaflet, the CSV data file was
pre-processed using python and necessary fields including
datetime, duration, shape, latitude, longitude, and comments were
extracted. Python was also utilized to generate HTML for each

report by formatting the date, time, duration, shape, and comment
fields in a separate, encapsulated field. The final output format
was an array of arrays, with each inner array representing the data
for a single report. The outer array was exported to a JavaScript
file, which was subsequently imported by the JavaScript code for
the tool itself.

The main functional elements of the tool were programmed using
JavaScript, wherein all reports were stored in a JavaScript
variable on page load. During use, users specify a set of filter
conditions. These conditions are set using the HTML fields found
in the control panel of the tool. Upon submission of these
conditions, a number of JavaScript functions are triggered which
check the values of the filter fields and store the values in a set of
arrays. These arrays are subsequently passed to the main logical
component of the tool which sequentially compares the contents
of each row in the data set to the conditions. If a row matches the
filter conditions exactly, it is added to a separate array of Leaflet

markers which ultimately determines the results which will be
plotted on the map. Markers are an integral data structure within
Leaflet containing the coordinates of a record along with a “title”
field. This field generates the detail view of the point and was tied
in our algorithm to the HTML detail field in the data set produced
using Python. If a row fails to match any condition, the other
comparisons are skipped, the algorithm moves on to the next row
in the data set, and the row is not added to the displayed output.

Once markers are generated from the filter-matching reports, the
markers are added to a marker group using Leaflet’s
MarkerCluster plug-in [6]. Again, this is a data structure defined
within the plug-in which allows the markers to be clustered and
subsequently appended to the main map.

Due to the large size of the NUFORC data set, simultaneously
plotting all reports on a map proved too computationally intensive
resulting in slow loading time and unstable performance.
Moreover, even on successful loading of all points, we found that
the plotted points were too congested to provide a useful view of
the geographical distribution. Rather than generating an
independent SVG marker for each report at low zoom levels, we
instead chose to employ Leaflet’s MarkerCluster plug-in. This
plug-in clusters individual markers into groups based on
geographic proximity as measured in pixel distance on the map.

While we considered developing our own clustering algorithm,
we found the performance of MarkerCluster to be suitable for our
purposes and appreciated its integration into Leaflet’s core
functionality, likely resulting from the fact that it was produced

by the same developers. While MarkerCluster proved to be an
effective solution for plotting the data, we found that load times
were still high due to the large size of the data set. To offset this,
we took advantage of an option built into the original code which
allows for “chunked” loading of points with triggering of external
code upon loading of each chunk. With this option enabled, we
adapted code from an example provided by the Leaflet developers
in order to generate a progress bar which was positioned over the
map. This progress bar provides visual feedback to the user to
indicate that the tool is not frozen during loading of a large set of
markers.

SentenTree was incorporated into our tool using the default
settings of the original designers. In order to tie the SentenTree
output to the reports visible on the map at any given time, the
coordinates of the displayed results were compared to the
coordinates of the north, east, south, and west bounds of the map
frame. We appended results falling within those bounds to an
array containing JavaScript objects with sequentially generated
IDs, a SentenTree weight of 1, and the comment associated with
each report. In order to properly parse the comment field, an
intermediate step was performed in which the comments were
passed through an HTML text field to convert HTML entities and
formatting to plain text.

Formatting and styling were accomplished using HTML and
CSS. The date selection component of the control panel was
drawn from a third-party Bootstrap tool (CITE). All other HTML
and CSS were produced by the authors.

Task Hayley Theodore

Data collection 0% 100%

Initial linguistic analysis
implementation

100% 0%

Initial geospatial implementation 0% 100%

Data cleaning 50% 50%

Plotting data to map/SentenTree 0% 100%

Filters 25% 75%

Optimization of data load 0% 100%

Design - layout and styling 100% 0%

Slides 75% 25%

Final Report 50% 50%

Results

We find that this tool provides an intuitive means for exploring
the data set while also revealing interesting subjective features of
the reports. As an example, we were interested in investigating
whether or not reports included any description of the sound
heard during sightings. In order to address this, we began by
filtering reports on the keyword “sound.” Our rationale was that
some percentage of reports may be explained by people observing
unfamiliar, yet conventional aircraft such as military jets,
propeller-driven planes, or helicopters. One might expect that

these aircraft would be audible, even if their sonic characteristics
were strange enough to the reporter to warrant a report. We found
a marked over-representation of the combination of the word
“no,” with the word “sound,” suggesting that the UFOs sighted by
reporters were often silent. Individual evaluation of a number of
comments corroborated this observation, leading us to the
conclusion that valuable information can be extracted from the
output of the SentenTree frame.

With the exception of two stages of peer review during the
development of this tool, we have not done any user studies or
computational benchmarking. Feedback we received during this
reviews was incorporated during our development and was
mostly related to the responsiveness of the tool. This was
addressed using the aforementioned MarkerCluster plug-in, as
well as by applying filter changes in batches rather than
individually. We have not followed up with these reviewers or
tested the tool on a wider audience since finishing development of
the tool.

Discussion and Future Work

A limitation we noted in our original design was that, short of
manually taking a screenshot, SentenTree results from one search
could not be directly compared to a subsequent search. By adding
the option to clone SentenTree output, we allow direct
comparison of multiple text analyses, yielding greater exploratory
power.

However, even with this advancement over our initial design, the
utility of the SentenTree output is limited by several factors.
Firstly, the SentenTree output is not interactive, meaning that any

search refinements based on the output must be performed
manually. This is mainly by means of modifying the keyword and
shape filters. Furthermore, using the map as a geographic filter is
a somewhat crude method given that SentreeTree filtering can
only be performed by moving the map. In future works, a
valuable feature may be the incorporation of a selection tool
which would enable users to select specific points or regions for
SentenTree analysis. Finally, SentenTree frames do not
encapsulate the filter conditions which produced the specific
output. A future implementation may incorporate a sub-frame
describing the filters and geographic region used to produce the
SentenTree output to enhance continuity.

Once a SentenTree is created, the interaction stops. Currently it is
simply a tool for pattern discovery over the entire dataset, but it
would be useful to be directed to certain items from these
patterns. For example, by hovering over a word in the sententree,
the corresponding data points on the map could change colour or
be highlighted or by selecting one or more words in the
sententree, the corresponding reports could be listed in a separate
view.

Each item in the SentenTree has an id, count, and text. The count
is the weight of the text. In our implementation, we left all the

counts for the text comments to be 1 so that it was even. In a
future iteration there could be weighting based on how many
sightings are reported within a certain time window and within a
certain radius. This may have some effect on the contextual
ambiguity of the SentenTrees. Currently the context of sentences
are preserved, but the result is vague. We do not know if this is
from the data itself not being related in a meaningful enough way
or if it is from our weighting strategy (evenly weighted), so this
would be an interesting problem to explore in the future

At one point we considered using different marks for different
reported shapes to add that as a visual indicator on the map. This
would require extra processing of the data to reduce the number
of categories as there are currently 18 different shapes. For
example, circle, oval, egg, and sphere could possibly merge into
one category and light and fireball could merge into another. The
reduction of shape categories may connect more sightings as

circle and oval could be a matter of perception based on location.
This representation of shapes might be difficult with the current
clustering methods; however, the marker clusters are a current
limitation of our implementation and with more time we would
have considered a more custom solution.

Conclusions

Although there is obvious room for improvement in this tool, we
believe that we have produced a viable means for interactively
exploring the linguistic contents of the NUFORC UFO sightings
data set. Our tool provides greater access to trends in the
comments associated with reports than individual assessment of
the comments alone, and our interface provides an intuitive way
to target reports matching a complex set of conditions in order to
evaluate a particular feature of interest.

Bibliography

[1] http://nuforc.org/General.html

[2] Mengdie Hu, Krist Wongsuphasawat, and John Stasko, “Visualizing Social Media Content with SentenTree”, IEEE
transactions on visualization and computer graphics 23.1 621-630. 2017

[3] F. B. Viegas, M. Wattenberg, and J. Feinberg. Participatory visualization with Wordle. IEEE Transactions on Visualization and
Computer Graphics, 15(6):1137–1144, 2009.

[4] https://www.kaggle.com/NUFORC/ufo-sightings

[5] http://leafletjs.com/index.html

[6] https://github.com/Leaflet/Leaflet.markercluster

[7] http://uxblog.idvsolutions.com/2015/06/sightings.html

[8] http://metrocosm.com/ufo-sightings-map.html

[9] https://github.com/uxsolutions/bootstrap-datepicker

